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ARTICLE INFO ABSTRACT 
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The bonding mechanism of aflatoxin B1 (AfB1) onto smectite in the batch adsorption test 
remains a subject of ongoing debate. One key aspect under contention is whether the 
interlayer of smectite is accessible to the AfB1 molecule. Some researchers contested the 
possibility of AfB1 intercalation into the smectite interlayer by highlighting the lack of 
discernible differences in basal spacing value before and after the adsorption experiment. 
Conversely, others have advanced the opposite argument based on observations indicating 
an increase in basal spacing value after adsorption. This study aims to resolve the 
discrepancy through a comparative examination of data from several previous studies that 
reported basal spacing values derived from X-ray diffraction (XRD) analysis, both before 
and after adsorption tests. By also considering the characteristic swelling behavior of 
smectite, this comparative examination explains the differing perspectives. The lack of 
discernible differences in basal spacing value pre- and post-adsorption tests, which was 
interpreted as the absence of AfB1 intercalation, was attributed to the fact that the initial 
samples were inherently in hydrated condition, as indicated by basal spacing values of 1.41 
to 1.59 nm, whereas in the dry state, these values would typically be ~0.98 to ~1.0 nm, 
thereby precluding further expansion. Consistent with a previous study that suggested AfB1 
bonding to smectite in hydrated conditions occurred through hydrogen bonding within the 
interlayer, we propose that the hydration state of smectite will significantly influence AfB1 
uptake. Thus, further research of adsorption test to investigate the relationship between 
AfB1 uptake as a function of the hydration state on smectite minerals is strongly suggested.  
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1. INTRODUCTION 
Numerous strategies have been developed to address 

aflatoxin B1 (AfB1) contamination, encompassing biological, 
chemical, and physical approaches (Cai et al., 2025; Savić et 
al., 2020; H.-B. Wang et al., 2023; B. Yang et al., 2022).  
Biological methods, such as bio-pesticides, bacteria, and 
yeasts, have demonstrated significant results in controlling 
aflatoxins. Bio-pesticides, usually applied in agricultural fields, 
are derived from atoxigenic strains that compete with 
toxigenic strains of Aspergillus flavus, thereby suppressing 
the growth and reproduction of aflatoxins (Abbas et al., 

2017). Among the various bacteria, Bacillus spp. has been the 
most broadly investigated for its potential in reducing 
aflatoxin. Bacillus subtilis has been reported to effectively 
inhibit the growth of Aspergillus parasiticus by up to 92% and 
the production of aflatoxin by up to 100% (Siahmoshteh et al., 
2018). In experimental studies, several yeasts strains such as 
Debaryomyces hansenii strain BCS003, D. hansenii, 
Kluyveromyces spp., Pichia anomala, Candida maltose, 
Saccharomyces cerevisiae RC008, and Saccharomyces 
cerevisiae RC016, have exhibited significant inhibitory effects 
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on aflatoxin production and Aspergillus spp. growth as well 
(Ren et al., 2020). For chemical control, several studies 
reported the use of ozone and chitosan nanoparticles for 
aflatoxin reduction (Sipos et al., 2021). Ozone detoxifies 
aflatoxin by destroying the double bond of the furan ring 
through electrophilic attack, thereby converting it into non-
toxic compounds such as aldehydes and acids (Atakan & 
Caner, 2021). Chitosan, at alkaline pH, has positively charged 
groups that enable it to bind with negatively charged aflatoxin 
(Ghobish et al., 2025; Hernandez-Patlan et al., 2018). Physical 
approaches such as thermal treatments, irradiation, and 
mechanical sorting, have been applied to decrease aflatoxin 
contamination in food commodities (Shabeer et al., 2022). 
Although aflatoxins are heat-resistant, methods such as 
roasting, boiling, and autoclaving can considerably degrade 
their levels, depending on the circumstances and commodity 
type (Shabeer et al., 2022). Non-thermal techniques, 
including cold plasma and gamma irradiation, have 
demonstrated efficacy rates of up to 95% and 97%, 
respectively (Shabeer et al., 2022; Sipos et al., 2021). 
Additionally, adsorbents like activated carbon, 
montmorillonite clay, diatomite, talc, and zeolite showed 
satisfactory aflatoxin-binding efficiencies of 93.5%, 86%-
100%, 90%-100%, 60%-100%, and 70%, respectively (Jiang et 
al., 2023; Oladele et al., 2025; Sprynskyy et al., 2018; Zavala-
Franco et al., 2018). 

Smectite, a group of expandable 2:1 phyllosilicate clay 
minerals, has been utilized as one of the strategies to remove 
AfB1 from aqueous systems since the late 1970s (Masimango 
et al., 1978). Several researchers have reported that 
bentonite showed excellent performance in removing AfB1 
from aqueous solution (de Lima Schlösser et al., 2024; Gan et 
al., 2019; Nones et al., 2017; Wang et al., 2020; 
Wongtangtintan et al., 2016; Zhao et al., 2022). However, 
researchers have disagreed on the precise bonding 
mechanism between AfB1 and smectite. Various perspectives 
proposed by researchers include the electron donor-acceptor 
model, which suggested an interaction between the carbon 
atom in the carbonyl of AfB1 and the negatively charged 
surface of the smectite mineral layer (Phillips, 1999; Phillips 
et al., 2008); hydrogen bonding interaction between the 
double hydrogen atoms in the furan ring of AfB1 and the edge 
of smectite(Desheng et al., 2005); epoxidation of double-
bonded carbons on the furan rings of AfB1 by the oxygens of 
the interlayer smectite surface (Tenorio Arvide et al., 2008); 
hydrogen bonding between the two carbonyl groups of AfB1 
and water molecules hydrating the interlayer cations in wet 
conditions, and ion-dipole interactions between the two 
carbonyl groups of AfB1 and the interlayer cations in dry 
conditions (Deng et al., 2010); simultaneous binding of 
released cations from the interlayer, which then adhered to 
the four oxygen atoms of the Si-O ring on the smectite 
mineral layer surface, forming a strong bridging-linkage 
(C=O)2··Ca2+··(O-Si)4 (Kang et al., 2016); and ion-dipole 
interaction of the two carbonyl groups with the cations in the 
edge smectite layer and the outermost interlayer cations 
(Aisawa et al., 2018). On the other hand, some of the 
researchers emphasized that bonding occurred only at the 
outer or edge of the smectite layer (Aisawa et al., 2018; 

Desheng et al., 2005), while others suggested that AfB1 was 
able to penetrate the interlayer (Deng et al., 2012; Deng et 
al., 2010; Kannewischer et al., 2006; Phillips, 1999).  

The objective of this study is to address the existing 
discrepancies within the literature pertaining to AfB1 
intercalation into smectite interlayer through a critical 
analysis of X-ray diffraction (XRD) basal spacing data from 
prior studies. A synthesis of the divergent perspectives from 
the dissenting researchers is conducted, drawing insights 
from the d001-value data analysis before and after adsorption 
tests, as reported in their respective papers. The interlayer of 
smectite is a crucial region as it accommodates the adsorbate 
binding site. A larger basal spacing typically enhances the 
entrapment of the adsorbate molecule. This study holds 
significance as it will provide new insight into the types of 
smectite exhibiting high adsorption capacity, underpin the 
future development of modifications to improve the 
adsorption performance, and contribute to the establishment 
of molecular and adsorption isotherm models for AfB1. We 
have identified four relevant articles presenting contradictory 
interpretations based on d001-value data. Before delving into 
the discussion on the bonding mechanism of AfB1 on 
smectite, the properties of AfB1 and smectite mineral are 
briefly outlined. 

 

2. AFLATOXIN B1 
Aflatoxins are a group of toxic compounds produced by 

fungi, especially Aspergillus flavus and Aspergillus parasiticus 
(Abrehame et al., 2023; Okechukwu et al., 2024; Shabeer et 
al., 2022). Aflatoxins are commonly detected as contaminants 
in various foods such as rice (Ali, 2019; Katsurayama et al., 
2018; Naeem et al., 2024), peanuts (Asare Bediako et al., 
2019; Krska et al., 2022; Masaka et al., 2022), maize (Falade 
et al., 2022; Kamika et al., 2016; Massomo, 2020), dried fruits 
(González-Curbelo & Kabak, 2023; Heshmati et al., 2017; 
Naeem et al., 2022), cereals (Kousar et al., 2024; Kumar et al., 
2022; Wei et al., 2024), cooking oil (Abbas et al., 2017; 
Karunarathna et al., 2019; Kholif et al., 2022; Waqas et al., 
2021), particularly in post-harvest products exposed to high 
relative humidity or wet condition (Gómez-Salazar et al., 
2023; Mutuli et al., 2022). There are more than 20 types of 
aflatoxins have been identified, but the most concerning are: 
B1, B2, G1, and G2 (Ji & Xie, 2020; Popescu et al., 2022; Wang 
et al., 2022). Among these, AfB1 is the most harmful and 
potent, posing a serious threat to human and animal health 
due to its carcinogenic properties (Adam et al., 2022; 
Marchese et al., 2018; Mutocheluh & Narkwa, 2022; Nugraha 
et al., 2018). The term “A-fla-toxin” is derived from A.flavus, 
with the “B” in AfB1 indicating its blue fluorescence (Dhakal et 
al., 2025; Lalah, 2019). It has been reported that AfB1 is 
strongly suspected to cause up to 28% of all cases in the world 
of hepatocellular carcinoma (HCC), the predominant form of 
liver cancer (Liu et al., 2017). Individuals who are hepatitis B 
virus (HBV) positive and contract AfB1 are estimated to face a 
30 times higher risk of developing liver cancer compared to 
those who are HBV negative (Do et al., 2020). In addition, 
studies have documented adverse effects of AfB1 on poultry, 
including liver pathological changes (Y. Wang et al., 2023), 
inflammatory damage, immunosuppression, and inhibition of 
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Figure 1. Chemical structure of AfB1 (drawn using Marvin 

17.21.0, Chemaxon, based on structural data from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) (accessed on April 25, 

2024) 
 
chick growth (Hou et al., 2022). Alarmingly, despite aflatoxins 
primarily accumulating in plant tissue, their contamination 
easily spreads to soil and water systems through rainfall 
(Juraschek et al., 2022). This insidious route leads to a high 
potential risk of exposure, particularly for individuals reliant 
on these water sources for drinking purposes. 

AfB1 is composed of five interconnected rings (Fig. 1), 
namely dihydrofuran, furan, methoxyphenyl, δ-lactone, and 
cyclopentenone (Phillips, 1999). Deng and Szczerba (2011) 
reported based on computed energy, net atomic distribution, 
and molecular dynamics simulation, consistently indicated 
that the oxygen atoms of the carbonyl groups at δ-lactone 
and cyclopentenone rings played a primary role in attracting 
positively charged species. The energy calculation after 
optimizing the AfB1 configuration revealed that the lowest 
energy in the attraction of two cations, Na+ and Mn2+, with the 
oxygen atoms on two carbonyl groups was in the region 
between these carbonyl groups. At equilibrium condition, 
over 96% of interaction between AfB1 and cations occurred 
within this region of the two carbonyl groups compared to 
other regions. The surface electrostatic potential at the two 
carbonyl groups exhibited the most negative values, while the 

methyl (CH3) group area displayed the most positive surface 
electrostatic potential. Interactions involving the oxygen 
atoms of the dihydrofuran ring and the lactone ring were 
found to be non-significant (Deng & Szczerba, 2011).  

 

3. SMECTITE 
3.1. Bentonite And Smectite 

The term "bentonite" was first introduced in 1898 by 
Knight to describe a specific type of clay exhibiting 
characteristic properties such as soapy texture, plasticity, and 
high colloidal nature, discovered in a Cretaceous-age bed 
near Fort Benton. Several definitions have been proposed 
after Knight's definition, however, the term bentonite is lately 
clearly defined as any clay containing predominantly smectite 
mineral whose physical properties are dictated by this 
mineral (Grim & Guven, 1978). Montmorillonite is the most 
common type of smectite, characterized by a structure 
comprising one octahedral sheet sandwiched between two 
tetrahedral silica sheets, commonly referred to as a 2:1 type 
(Fig. 2). These smectite layers are vertically stacked along the 
c-axis direction. The space between layers, known as the 
interlayer, is bonded by van der Waals and electrostatic 
forces, typically involving interlayer cations such as Na+ or 
Ca2+. Although the bonds within the interlayer are weak, they 
exhibit excellent cleavage. The interlayer is accessible for 
water molecules or other polar molecules, allowing for 
swelling in the c-direction. The distance between the 
uppermost tetrahedral sheet of two neighboring smectite 
layers within a stack is referred to as the basal spacing. By 
analyzing the intensity and position of the 001 reflection in 
XRD, the length of the basal spacing can be determined. Basal 
spacing is an important factor in the characterization of 
smectite minerals, as the change in its values can indicate 
hydration state alteration, the presence of molecules within 
the interlayer, and other structural modifications.  

 

3.2. Source Of Smectite Charge 
The penetration of cations into the interlayer is due to the 
insufficiency of charge on the surface of the smectite mineral 
layer, resulting from isomorphic substitution. Isomorphic 
substitution is a replacement of the central cation in the 
tetrahedral or octahedral sheet by another cation of almost 
the same size without changing the crystal structure (Fig. 3). 

 
 

 
Figure 2. Structure of smectite mineral (modified from Grim and Guven (1978)) 

https://pubchem.ncbi.nlm.nih.gov/
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Figure 3. a. Illustration of smectite mineral before isomorphic substitution, demonstrating a neutral charge. b. Illustration of 

smectite mineral after isomorphic substitution, exhibiting a charge deficiency due to substitution of Al3+ by Mg2+. This 
isomorphic substitution type leads to the formation of montmorillonite species (modified from Essington (2003)) 

 
Table 1. Species nomenclature of smectite group according to cation substitution (Marshall (1964); Warshaw and Roy (1961); 

Ross and Hendricks (1945)) 

Type Group Subgroup Species Tetrahedral sheet 
substitution 

Octahedral sheet 
substitution 

2:1 Smectite Dioctahedral 
smectite 

Montmorillonite None 1 Mg2+ for every 
sixth Al+3 

Beidellite Al+3 for Si4+ None 

Nontronite Al+3 for Si4+ Fe+3 for Al+3 

Trioctahedral 
smectite 

Hectorite None Li+ for Mg2+ 

Saponite Al+3 for Si4+ Fe3+ for Mg2+ 

Sauconite Al+3 for Si4+ Zn+2 for Mg2+ 

 
For instance, Si4+ is substituted by Al3+ in tetrahedral 
coordination. Al3+ is substituted by Mg2+, Fe2+, or Fe3+ in 
octahedral coordination. The type of cation and its 
substitution location, whether in tetrahedral or octahedral 
coordination, determine the species name of the smectite, as 
outlined in Table 1. This substitution generates a negative 
permanent charge if the replacement cation has a lower 
charge, thereby attracting other cations into the interlayer 
space via electrostatic forces. Isomorphic substitution is a 
natural occurrence during the formation of minerals. 
 

3.3. Swelling Behavior of Smectite 
Smectite has a hydrophilic property which adsorbs water 

molecules into its interlayer due to cations hydration, 
resulting in basal spacing expansion. Although water 
molecule is electrically neutral, it possesses polarity because 
the oxygen atom exhibits higher electronegativity compared 
to the hydrogen atom, causing the oxygen atom to attract the 
shared electrons more strongly than the hydrogen. 
Consequently, this unequal sharing of electrons generates 
partial negative charge on the oxygen atom and partial 
positive charge on the hydrogen atom. In the hydration 
process of smectite, the negative dipoles of water molecule 
align toward the interlayer cations, weakening the 
electrostatic interaction between the negatively charged 
surface of the smectite mineral layers and the interlayer 
cations (Madsen & Müller-Vonmoos, 1989). The expansion of 
basal spacing due to the hydration follows a stepwise 
mechanism corresponding to the increase in the number of 
discrete sheets of water molecules in the interlayer (Chávez-

Páez et al., 2001; Madsen & Müller-Vonmoos, 1989; Tamura 
et al., 2000; Zhang et al., 2016). In the case of Na- and Ca-
smectite montmorillonite, interlayer hydration results in the 
arrangement of 1, 2, 3 layer-hydrates, corresponding to 32, 
64, 96 water molecules, respectively, with each new layer 
forming after the preceding layer is completely formed 
(Zhang et al., 2016). The interlayer expansion at 0, 1, 2, 3 
layer-hydrates is reported as 0.899, 1.153, 1.458, 1.704 nm 
for Na- smectite montmorillonite, and 0.974, 1.224, 1.508, 
1.791 nm for Ca- smectite montmorillonite, respectively 
(Zhang et al., 2016). 

 

4.  UNRAVELING THE DISAGREEMENT REGARDING THE 
INTERCALATION OF AFB1 INTO SMECTITE 
INTERLAYER 
Several studies asserted that the main interaction 

between AfB1 and smectite occurred at the dicarbonyl groups 
of AfB1 with the cations of smectite. Nevertheless, the specific 
cationic site of smectite involved in this interaction remains a 
subject of debate, including the possibility of AfB1 molecule 
intercalation into the interlayer. Desheng et al. (2005) 
conducted adsorption tests on Ca-montmorillonite using 
eight different concentrations of AfB1 at pH 2 and 9, reporting 
the amount of AfB1 adsorbed were 80% and 90%, 
respectively. Interestingly, no expansion of d001-value was 
observed before and after the adsorption test, which 
remained consistently at 1.41 nm. Consequently, Desheng et 
al. (2005) concluded that the AfB1 molecule only adhered to 
the edge of the montmorillonite layer. Aisawa et al. (2018) 
utilized four raw and one acid treated montmorillonite for 
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adsorption tests conducted at various pH levels ranging from 
3 to 9. All raw montmorillonite samples showed high 
percentages of AfB1 removal, approximately 90 to 95%, with 
pH and temperature simply did not affect the adsorption 
performance. Notably, significant changes in d001-value were 
also not observed after the AfB1 adsorption test. Aisawa et al. 
(2018) concluded that the unchanged d001-value after the 
adsorption test was attributed to the carbonyl group of AfB1 
adhering to the outermost central cation of the octahedral 
sheet and the outermost exchangeable cation (Aisawa et al., 
2018).  

Other findings suggesting that the smectite interlayer is 
accessible to the AfB1 were put forward. Deng et al. (2010) 
pointed based on experiment, there was d001-value change 
between Ca-smectite and AfB1-saturated Ca-smectite after 
adsorption test. These two conditions of sample were 
analyzed by using XRD with variable temperature. The d001-
value of Ca-smectite was plummeted from ~1.52 nm to below 
1.0 nm at 150°C. Similarly, the d001-value of AfB1-saturated Ca-
smectite was plummeted from ~1.49 to ~1.3 nm at 100°C, 
gradually decreasing to 1.2 nm at 200°C, and then slightly 
dropping to 1.04 nm at 500°C (Deng et al., 2010). 
Conformable results were also observed by Alam et al. (2015), 
who also conducted XRD analysis with variable temperatures. 
They found the basal spacing of Ca-smectite decreased from 
~1.5 to ~1 nm after heating at 200°C, while the basal spacing 
of AfB1-saturated Ca-smectite exhibited a slight decrease 
from ~1.49 to ~1.39 nm (Alam et al., 2015). The summary of 
basal spacing changes can be seen in Table 2. 

Several researchers reported that the basal spacing of 
montmorillonite would be dropped to ~0.9 to ~1 nm under 

dehydrated condition after heating at range 100 to 200°C (Ali-
Bik et al., 2022; Barrientos Velazquez & Deng, 2020; McAtee 
Jr. & Concilio, 1959; Orolínová et al., 2012; Ribeiro dos Santos 
et al., 2019). In its original condition, smectite typically 
contains water molecules in the interlayer. Some reports 
indicated that the basal spacing of Ca-montmorillonite, 
sourced from nature or industry and analyzed using XRD 
without any high-temperature treatment, had range in values 
~1.38 to ~1.54 nm, with the most dominant values emerging 
around 1.4 nm (Agustian et al., 2023; Ali-Bik et al., 2022; Baek 
et al., 2022; Barrientos Velazquez & Deng, 2020; Goo et al., 
2023; Karakaya et al., 2011; Mao et al., 2024; Rinaldi et al., 
2023; D. Yang et al., 2022). Furthermore, the other 
researchers, Watanabe and Sato (1988), reported basal 
spacing values at relative humidity (RH) of 0% and 100% for 
homoionic Na, K, Ca saturated smectite montmorillonite, 
respectively, as follows: ~1.00 and ~1.88 nm, ~1.03 and ~1.24 
nm, ~1.16 and ~1.88 nm. In addition, Tamura et al. (2000) also 
reported basal spacing values at RH of 0% and 95% for 
homoionic Na, Li, K, Ca, Mg saturated smectite, respectively, 
as follows: ~0.99 and ~1.5 nm, ~1.01 and ~1.51 nm, ~1.0 and 
~1.26 nm, ~1.19 and ~1.81 nm, ~1.39 and ~1.85 nm. 

Based on the comparison, we determine that the initial 
condition of samples observed by Desheng et al. (2005) and 
Aisawa et al. (2018) were in hydrated condition and did not 
experience an increase in basal spacing after adsorption test; 
hence it is proposed that the carbonyl group of AfB1 was 
attached to the water molecules in the interlayer through 
hydrogen bonding mechanism, as suggested by Deng and 
Szczerba (2011) and Alam et al. (2015).  

 
Table 2. Comparation d001-value from XRD analysis before and after AfB1 adsorption 

Ref Sample code 

d001-value (nm) Temperature 
during XRD 
analysis (°C) 

before AfB1 
adsorption 

after AfB1 
adsorption 

Desheng et al. (2005) Mont. 1.41 1.41 - 
Aisawa et al. (2018) MT-1 1.52 1.54 - 
 MT-2 1.52 1.52 - 
 MT-3 1.50 1.50 - 
 MT-4 1.59 1.57 - 
Deng et al. (2010) SM (before 

adsorption)/AfB1-Ca-Sm 
(after adsorption) 

~1.52 ~1.49 ~30 

 SM (before 
adsorption)/AfB1-Ca-Sm 

(after adsorption) 
~0.98 ~1.3 150 

 SM (before 
adsorption)/AfB1-Ca-Sm 

(after adsorption) 
~0.98 ~1.03 500 

Alam et al. (2015) 3MS (before 
adsorption)/AfB1-3MS-in 
water (after adsorption) 

~1.5 ~1.49 ~30 

 
3MS (before 

adsorption)/AfB1-3MS-in 
water (after adsorption) 

1 ~1.39 200 
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The hydration of smectite is affected by various factors, 
including the extent and location of layer charge, cation 
species in the interlayer, the water activity, temperature, 
external pressure, and salinity of the bulk solution (Villar et 
al., 2012). Therefore, the length of swelling can vary even 
among distinct smectite minerals. 

 

5. FUTURE CHALLENGE 
In this study, we develop a new hypothesis based on the 

primary conclusion that if hydrogen bonding plays role when 
the interlayer of smectite is in hydrated condition, then 
smectite with higher hydration state and longer swelling 
length will exhibit higher adsorption capacity. To validate this 
finding, adsorption test of AfB1 should be performed using 
smectite samples from single origin to ensure relatively 
uniform layer charge and its distribution. Samples with single 
homogeneous cation, saturated with Na, Ca, K, Li, and Mg, 
respectively, should be prepared, as the type of interlayer 
cation influences swelling behaviour. Following the 
adsorption test, variable temperature XRD analysis is 
performed, similar to the method conducted by Deng et al. 
(2010), to determine the basal spacing values for both 
adsorbed and non-adsorbed samples under saturated and dry 
conditions. Building upon hypotheses adapted from previous 
study by Tamura et al. (2000), it is expected that K-saturated 
smectite will experience the least swelling, while Mg-
saturated smectite will exhibit the highest swelling. 
Consequently, it is also presumed that K-saturated smectite 
will have the lowest AfB1 adsorption capacity, while Mg-
saturated smectite will have the highest. Therefore, the more 
water molecules penetrate the interlayer, the more AfB1 
molecules are attracted (Fig. 4). 

Another hypothesis is also further developed based on the 
variable temperature XRD analysis result of Deng et al., which 
suggested that AfB1 molecules remaining in the interlayer 
were docked in the interlayer cations in dry conditions (Deng 
et al., 2010). Therefore, it is assumed that the decrease in 
basal spacing values of each AfB1 adsorbed smectite in 
dehydrated condition will follow consistent sequence pattern 
observed when in hydrated condition, with the lowest for K-
saturated smectite and the highest for Mg-saturated 
smectite.  

Another important consideration that must be noted is 
the determination of the maximum adsorption capacity (Qmax) 
if the hypothesis based on the change in basal spacing values 
is correct. The crucial factor here is whether the Langmuir 
adsorption isotherm, typically applied in such cases (Alam & 
Deng, 2017; D'Ascanio et al., 2024; Daković et al., 2012; Wang 
et al., 2020), is suitable for this type of adsorption. The 
Langmuir model is developed based on the assumption of the 
formation of monolayer by adsorbate molecules covering the 
entire surface of the adsorbent. Smectite is commonly 
utilized as an adsorbent to remove cationic contaminant from 
aqueous solution because of the negative charge on its 
surface, and the Langmuir model usually employed to find the 
Qmax (Amutenya et al., 2022; Iskander et al., 2011; Prastistho 
et al., 2018), however, the adsorption of AfB1 onto smectite 
has different mechanism. 

 
Figure 4. Schematic illustration: greater hydration state of 

smectite results in higher adsorption capacity of AfB1 
 

6. CONCLUSION 
This study clarifies the contradictory interpretations 

concerning AfB1 intercalation within smectite interlayer in 
previous studies. The absence of basal spacing expansion 
after adsorption was attributed to the initial samples 
condition were not in the expected dry condition (~0.98 to 1 
nm), but instead exhibited values ranging 1.4 to 1.59 nm. This 
finding supports the conclusion proposed in previous 
research that hydrogen bonding played role when the mineral 
was in wet condition, while ion-dipole attraction occurred 
when the mineral in dry condition. However, further 
researches are required to reinforce this conclusion by 
elucidating the relationship between hydration state and AfB1 
adsorption capacity. A confirmed relationship would 
necessitate the development of adapted adsorption model. 
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