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Nanoparticles are increasingly used in many industrial fields because of their special 
properties. In this context, several questions arise related to possible negative 
consequences associated with nanoparticle (NPs) entrance into the ecosystem.  The 
adsorption of NPs by soil can adversely influence its biological properties. In the present 
article, the influence of Cu, Zn, and Ni NPs on the biological characteristics of Arenosol is 
considered. Research aimed to study the effect of Cu, Zn, Ni NPs on the biological 
characteristics of sandy loam chernozem. Copper, Zn, and Ni NPs were added to the soil in 
concentrations of 100, 1,000, and 10,000 mg kg-1. The effect of NPs on the biological 
properties of Arenosol was evaluated after 10-day incubation. The biological indices of the 
ecological condition of the soil, including the germination of radish, the length of the roots, 
the bacteria population, Azotobacter sp. count, the catalase activity, and dehydrogenases 
were studied. As a result of this study, it was revealed that the degree of indices changes 
depending on the concentration of Cu, Zn, and Ni NPs in the Arenosols. Microbiological 
characteristics (bacteria population, and Azotobacter sp. count) and phytotoxic feature 
(length of roots and radish germination) properties were most sensitive to contamination 
compared to the enzyme activity of Arenosol. Based on the soil integral index of a biological 
state, the strongest inhibitory effect on biological parameters of Arenosols relative to the 
control was exerted by Cu NPs (lower than control by 48-72%), while the greatest stability 
in Arenosol was found for Ni NPs (lower than control by 30-55%). The studied biological 
parameters allow characterizing the severity of nanoparticle exposure on Arenosols. Early 
diagnostics of the severity of soil contamination by NPs can be successfully used to quickly 
assess their impact on the soil condition and prevent possible adverse consequences. 
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1. INTRODUCTION
Because of their multiple special characteristics, 

nanoparticles (NPs) are applied in many industries, such as 
agriculture (Acharya et al., 2020; Adisa et al., 2020; Faizan et 
al., 2020), medicine (Patra et al., 2018; Shende et al., 2021), 
cosmetology (Pastrana et al., 2018), industry (Ali et al., 2021; 
Ameta et al., 2020), etc. However, large-scale synthesis and 
application of NPs cause a threat of adverse consequences of 
their release into the environment (Rajput, Minkina, 
Fedorenko, et al., 2021; Rajput, Minkina, Kumari, et al., 2021; 
Ranjan et al., 2021; Shende et al., 2021). Once in the soil, NPs 
change its fertility, the population of soil microflora, as well 
as physiology and metabolism of important plants (Ali et al., 

2021; Iqbal et al., 2019; Rai & Ingle, 2012; Rajput, Singh, et al., 
2021). However, the research results on the effect of NPs on 
the environment are not consistent. Some scientists have 
identified adverse effects on plants (Minkina et al., 2020; 
Usman et al., 2020; Zoufan et al., 2020), animals (Rajput et al., 
2017; Rajput et al., 2018), and soil characteristics (Kolesnikov, 
Minnikova, et al., 2021). At the same time, the other 
researchers confirmed the absence of any adverse effects 
(Faizan et al., 2021; Samarajeewa et al., 2017) or even note a 
positive effect (Acharya et al., 2020; Faizan et al., 2020; 
Shekhawat et al., 2021). Nanoparticles entering the soil are 
distributed differently depending on soil fertility, structure, 
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and composition. The behavior of NPs depending on soil 
thickness (Khanna et al., 2021; Tourinho et al., 2012). 
However, studying a single soil parameter is not enough to 
understand the effect of NPs. Experiments are needed to 
study the distribution of NPs depending on other soil 
parameters, for example, such as the granulometric 
composition and the soil response. Such information would 
provide many chances to develop methods for remediation 
and rebuild soil fertility depending on its type, structure, and 
composition. 

The goal of the present work is to evaluate the impact of 
Cu, Zn, and Ni NPs on the biological properties of Arenosols. 

 

2. MATERIALS AND METHODS 
2.1. Study area 

In this research, the soil was classified as sandy loam black 
soil. The soil samples were taken at 
Verkhnekundryuchenskaya village, the Rostov Region, Russia 
(47°46'0.57" N; 40°51'41.69" E). This type of soil is 
characterized by a sandy loam granulometric composition, 
poor structure, a mean organic matter content of 2.3%, and a 
neutral soil reaction, pH = 6.8. For the experiment, the top 
layer of Arenosols (0-20 cm) was chosen, since it is here that 
heavy metals are deposited (Kabata-Pendias, 2010). 

 

2.2. Experimental design 
The present study aimed to provide a comprehensive 

evaluation of the effect of Cu, Zn, and Ni NPs on the 
phytotoxicity, microbial, and fermentation activity of 
Arenosol. The sizes of the Cu, Ni and Zn NPs for modeling 
were 50-100, 70-80, and 90-150 nm, respectively. The 
selection of metals was due to the fact that they are most 
often used in various fields of nanotechnology, and therefore 
the risk of their entering the soil is more likely than NPs of 
other elements. Polluting substances were introduced into 
the soil in the contents of 100, 1000, 10000 mg kg-1. The soil 
was placed in plastic containers at a temperature of 22-25 °C 
and soil humidity of 60%. The effect of Cu, Zn, and Ni NPs on 
the biological characteristics of Arenosols in a model 
experiment was evaluated after 10 days of incubation. 

 

2.3. Measurement procedures 
Experimental tests were carried out using methods 

confirmed in ecology, biology, and soil science (Table 1). The 

soil condition was studied based on phytotoxic characteristics 
of the soil (root length and germination rate), the total 
bacteria count, Azotobacter sp. count, the catalase and 
dehydrogenases activity. Soil toxicity was evaluated using the 
germinating ability of radish seeds and root length (n = 180: 3 
incubation vessels, 3 soil samples, x 20 seeds). 

Microflora studies were carried out by the fluorescence 
microscopy method for evaluation of bacterial abundance in 
the soil according to Zvyagintsev et al. (2005) (n=720: 3 
incubation vessels with soil x 3 soil samples x 4 square 
centimeters on slides x 20 microscope fields of view). 
Azotobacter sp. abundance was taken into account by fouling 
soil lumps method on non-acidified Ashby medium (n = 180: 
3 incubation vessels with, 3 soil samples, 20 fouling lumps). 
Catalase activity was measured using hydrogen peroxide 
decomposition rate (n = 36: 3 incubation tubes with soil x 3 
soil samples x 4 repetitions), dehydrogenases activity by the 
conversion rate of triphenyl tetrazolium chloride to 
triphenylformazane (n = 36: 3 incubation vessels with soil x 3 
soil samples x 4 repetitions). 

Biological indices are the first to respond to chemical 
contamination of the soil. Therefore, it is appropriate to apply 
exactly biological indices to assess the ecological condition of 
soils (Kolesnikov et al., 2019). To diagnose the soil condition 
after chemical contamination, it is advisable to use 
informative and sensitive biological indices as the most 
effective. The degree of the instructive value of the index was 
determined by the closeness of correlation between the 
index and the pollutant concentration in the soil. The 
sensibility of the indices was determined by analyzing the 
level of decrease in the contaminated soil compared to the 
blank soil. 

To combine a large number of indices, the method of 
determining the integral index of the biological state of soils 
(IIBS) was used (Kolesnikov, Minnikova, et al., 2021; 
Kolesnikov, Timoshenko, et al., 2021). 

 

2.4 Statistical analyses 
for validation of the results, a variance and correlation 

analysis were performed, and then the means were 
compared using the least significant difference (LSD) at p ≤ 
0.05. The data were obtained by three-fold reduplication. 
Statistical data were processed using the Statistica software 
package (version 12.0). 

 

Table 1. Measurement and methods of biological properties. 

No Biological Indices Unit Method 

1 The total number of bacteria 109 bacteria in a gram of soil dry 
weight 

luminescent microscopy with the solution of 
acridine orange, 40X 

2 Azotobacter sp. Abundance % of the mud balls surrounded by 
Azotobacter mucus 

the method of fouling lumps on the Ashby 
medium 

3 Catalase activity ml O2 per gram of soil dry weight in 1 
min 

by the rate of decomposition of hydrogen 
peroxide 

4 Dehydrogenases activity mg of triphenylformazane (TPF) per 
gram of soil dry weight per hour 

according to the rate of conversion of 
triphenyltetrazolium chloride (TPC) to TPF 

5 The germination rate of radish 
seeds 

% of germination seeds of control the germination rate of radish (Raphanus 
sativus L.) after 7 days of the experiment 

6 Radish roots length millimeters of roots length of the radish (Raphanus sativus 
L.) after 7 days of the experiment 
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Figure 1. Change in microbiological indices of Arenosols by Cu, Ni, Zn NPs pollution, % of control 

Notes: A) the total number of bacteria; B) Azotobacter sp. abundance 

 

3. RESULTS 
3.1. Influence of Cu, Ni, and Zn NPs on microbiological 

publication of the soil 
Application of NPs at concentrations of 100, 1000, and 

10000 mg kg-1 decreased in the total bacteria number (Fig. 1A) 
and the Azotobacter sp. count of Arenosol (Fig. 1B). The Cu 
and Zn NPs had a higher effect. The Ni NPs were less toxic 
than the Cu and Zn NPs. When contaminated with Cu NPs, 
there was a tendency to restore the total number of bacteria, 
which was not typical for the other two elements. In most 
cases, the total bacteria number in the Arenosols decreased 
more significantly than the Azotobacter sp. abundance. The 
100 mg kg-1 concentration of Cu, Zn, and Ni NPs reduced the 
total bacteria number by 51, 62, and 54%, respectively, while 
the Azotobacter sp. abundance –23, 13, and 18%, 
respectively. 

Application of Cu and Zn NPs to the Arenosols in an 
amount of 10000 mg kg-1, decreased the Azotobacter sp. 
abundance completely. No other biological index from the 
studied indices decreased dramatically. The Ni NPs had 

significantly less toxic effects on the Azotobacter sp. 
abundance. Thus, the index of the Azotobacter sp. abundance 
turned out to be very sensitive only when contaminated with 
Cu and Zn NPs, and only at an extremely high concentration 
of 10000 mg kg-1. In all other cases, the Azotobacter sp. 
abundance decreased insignificantly. This contradictory 
result was obtained by other researchers, which indicate that 
the sensibility of nitrogen-fixing bacteria to NPs is one million 
times higher than that of other groups of prokaryotes 
(Baklitskaya, 2011; Feng et al., 2013; Moll et al., 2016). 

Thus, microbiological parameters in the sandy loam black 
soil responded negatively to contamination with Cu, Zn, Ni 
NPs. 

 

3.2. Effect of Cu, Zn, and Ni NPs on enzymes activity in 
soil 

Soil enzymes are catalyzing important metabolic 
processes. Their activity is determined with high accuracy and 
is a stable and sensitive index of soil biogenesis (Andreoni et 
al., 2004; Pascual et al., 2000). 

 

 
Figure 2. Change in catalase activity of Arenosols by Cu, Zn, Ni NPs pollution, % of control 
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Figure 3. Change in dehydrogenases activity of Arenosols by Cu, Zn, Ni NPs pollution, % of control 

 

The level of different concentrations effect of Cu, Ni, and 
Zn NPs on the activity of catalase and dehydrogenases is 
shown in Figure 2 and 3. The fermentation activity of Arenosol 
is sensitive to the presence of Cu, Zn, and Ni NPs. The 
sequence of metals effect on the catalase activity was as the 
following series: Zn ≥ Cu > Ni, while this sequence for 
dehydrogenases was obtained as this series: Cu > Zn > Ni. 

When Cu, Zn, and Ni NPs are introduced to the soil at a 
concentration of 100 mg kg-1, the dehydrogenase activity 
decreased by 44, 26, and 9%, respectively, while the catalase 
activity decreased by 15, 12, and 7%, respectively. Thus, the 
dehydrogenase activity was more sensitive to contamination 
by Cu, Zn, and Ni NPs than the catalase activity. 
 

3.3. The effect of NPs on root length and germination 
rate of radish 

The level of impact of various contents of Cu, Zn, and Ni 
NPs on the germination and length of radish roots is shown in 
Fig. 4. The toxic level of Arenosols for radish (germination and 
length of roots) was most affected by Cu NPs. Already at 100 
mg kg-1 concentration, a decline in the germination of 
radishes by 70% relative to the control, as well as a reduction 
of the length of the roots by 85% was observed. Also, further 
enhancement in the concentration of Cu NPs decreased 
germination rate, and the length of the radish roots was first 
slightly restored and then decreases again. Zinc NPs had a 
slightly smaller effect on phytotoxic properties than Cu NPs.

 
Figure 4. Change in phytotoxity indices of Arenosols by Cu, Ni, Zn NPs addition, % of control 
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At the concentration of 100 mg kg-1, the germination of 
radishes reduced by 60% of the control, while the length of 
the roots was decreased by 66%. The higher the 
concentration, the stronger was the toxic effect. Nickel NPs 
had the least effect on germination (a 45% decrease of the 
control at a concentration of 100 mg kg-1) and radish root 
length (a 46% decrease of the control at a concentration of 
100 mg kg-1). Also, the concentrations of 1000 and 10000 mg 
kg-1 had the same effect on germination. As for the length of 
the radish roots, it decreased with an increase in the 
nanoparticle concentration. Thus, the phytotoxic properties 
of sandy loam black soil turned out to be sensitive to the 
presence of Cu, Zn, and Ni NPs. 

 

3.4 Integral index of the biological state of Arenosols 
contaminated by Cu, Ni, and Zn NPs 

The results of the IIBS calculations based on the analysis 
of the effect of Cu, Zn, and Ni NPs on the state of the Arenosol 
are shown in Fig. 5. The concentration of 100 mg kg-1 Cu, Zn, 
and Ni NPs, decreased IIBS by 48, 40, and 30%, respectively, 
while at 1000 mg kg-1 – by 62, 50, and 44%, respectively, and 
at 10000 mg kg-1 – by 72, 73, and 55%, respectively. Thus, in 
terms of the influencing degree on the biological properties 
of sandy loam black sands, the following series were obtained 
Cu > Zn > Ni. The studied NPs had the greatest effect at a 
concentration of 10000 mg kg-1. So, there is a positive 
correlation between the NPs content and the degree of 
deterioration of the biological properties of Arenosol. 

 

3.5 Assessment of the informative value of biological 
indices  

The instructive value of the index can be determined by 
the closeness of the correlation between the index and the 
content of the polluting substance in the soil. Table 2 presents 
the correlation coefficients of the studied biological indices. 

In terms of informative value (based on the closeness of 
the relation between the index and the concentration of the 
pollutant in the soil), the studied biological indices are 
arranged as follows. 
When contaminated with Cu NPs: total bacteria count > 
abundance of Azotobacter genus bacteria ≥ catalase activity 
> dehydrogenase activity ≥ germination > root length. 
When contaminated with Zn NPs: abundance of Azotobacter 
genus bacteria > dehydrogenase activity > catalase activity > 
germination > total bacteria count > root length.  
When contaminated with Ni NPs: catalase activity ≥ 
abundance of Azotobacter genus bacteria > dehydrogenase 
activity > root length ≥ total bacteria count > germination 
rate. 

 

3.6 Assessment of the sensitivity degree of biological 

indices 
The sensitivity degree of the index was evaluated by the 

decrease in its value in presence of contaminants compared 

to the control.  Table 3 shows the values of the degree of 

decrease in the studied biological parameters. These are the 

average values for all concentrations of heavy metal NPs. 

In terms of the sensitivity degree (according to the 

decrease in values) to the presence of Cu, Ni, and Zn NPs, the 

studied biological parameters are arranged as follows. 

When contaminated with Cu NPs: root length > germination 

rate > total number of bacteria > Azotobacter sp. abundance 

> dehydrogenases activity > catalase activity.    

When contaminated with Zn NPs: total number of bacteria ≥ 

root length > germination rate > Azotobacter sp. abundance > 

dehydrogenases activity > catalase activity.  

When contaminated with Ni NPs: total number of bacteria ≥ 

root length > germination > Azotobacter sp. abundance > 

dehydrogenases activity> catalase activity. 

 

 
Figure 5. Change in integral index of biological state of Arenosols by Cu, Ni, Zn NPs pollution, % of control 
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Table 2. Correlation coefficients (r) between the content of Cu, Ni, and Zn NPs in Arenosols. 

No Biological index Cu Zn Ni Average 

1 total number of bacteria -0.90* -0.58 -0.59 -0.69 
2 Azotobacter sp. abundance -0.67 -0.92* -0.83* -0.80 
3 catalase activity -0.64 -0.85* -0.85* -0.78 
4 dehydrogenases activity -0.54 -0.85* -0.83* -0.74 
5 germination rate of radish seeds -0.52 -0.59 -0.47 -0.53 
6 length of the radish roots -0.42 -0.50 -0.68 -0.53 
7 IIBS -0.62 -0.75* -0.69 -0.69 

Note: * p <0.05 compared to the control 
 

4. DISCUSSION 
It was confirmed that Cu, Zn, and Ni NPs decreased the 

germination rate and length of radish roots. Other works have 
also noted negative impacts of Cu and Zn on plant condition 
(Ghosh et al., 2016; Hossain et al., 2015; Ranjan et al., 2021). 
However, some studies have noted a stimulating effect of Cu 
on plant conditions (Polischuk et al., 2019).  

The toxicity mechanisms of heavy metal NPs with respect 
to plants are associated with the inhibition of major 
physiological processes, like photosynthesis, mineral 
nutrition, and water-binding (Minkina et al., 2020; Yadav et 
al., 2014). In addition, due to the high redox capacity, the ions 
of HM NP can participate in the redox reactions in cells and, 
through the Haber-Weiss and Fenton reactions, lead to the 
formation of reactive oxygen species, like superoxide radicals, 
hydrogen peroxide, and hydroxyl radicals. Besides, as noted 
above, HM NPs cause the inactivation of enzymes as a result 
of interaction with sulfhydryl groups of proteins, which leads 
to metabolic disorders and causes chlorosis, necrosis, and 
growth retardation of shoots and roots (Manceau et al., 
2008). 

It was confirmed that the ecotoxicity of Cu, Zn, and Ni NPs 
on soil microorganisms increases with increasing 
concentration. The results of other works have indicated that 
NPs can penetrate directly into the cell and cause more 
damage than macroparticles. This concerns interference with 
DNA and protein synthesis, redox, and organoid functions 
(Slavin et al., 2017; Yoo et al., 2021).  

The mechanism of the inhibitory effect of metal NPs on 
enzymes seems to be due to their interaction with sulfhydryl 
groups (Manceau et al., 2008; Metryka et al., 2021; Slavin et 
al., 2017). The degree of ecotoxicity of NPs depends not only 
on the dose but also on the class of the enzyme. In the present 
study, it was revealed that dehydrogenase activity is less 
sensitive to contamination by Cu, Zn, and Ni NPs than catalase 
activity. Previous studies have shown both the negative 
impact of NPs on the activity of enzymes (Kolesnikov, 

Timoshenko, et al., 2021; Peyrot et al., 2014; Shende et al., 
2021) and the positive effect (Asadishad et al., 2017).  

The present work is consistent with the hypothesis that 
the higher the content of NPs in the soil, the more 
pronounced are toxic effects on biological parameters of the 
soil (the activity of enzymes, total bacteria count, and 
phytotoxic indices). According to the obtained biological 
indices of the state of soil contaminated with Cu, Zn, and Ni 
NPs, their information value and sensitivity were evaluated.  

The indices of enzymatic activity and microbiological 
indices turned out to be the most informative in terms of 
reflecting the status of the studied black soil contamination 
with Cu, Zn, and Ni NPs, while the indices of phytotoxicity 
were less informative. Microbiological and phytotoxicity 
indices were the most sensitive to contamination by Cu, Ni, 
and Zn NPs. The indices of enzymatic activity were less 
sensitive. A similar result was obtained earlier for oxides and 
water-soluble salts of heavy metals, including Cu, Zn, and Ni 
(Vodyanitskii, 2016). Also, the sensitivity of the index 
depended on the nature of the metal. Copper and Zn NPs 
showed greater toxicity than Ni ones. This does not support 
the existing hypothesis that the toxicity of NPs depends on 
their size and does not depend on the chemical nature of the 
element. A slightly different pattern was observed for oxides 
and water-soluble salts of these heavy metals. Thus, Cu and 
Ni NPs were more toxic than Zn NPs (Abdel-Khalek et al., 
2015; Iqbal et al., 2021).  

Because some indices are sensitive, while others are 
informative, it is advisable to use the IIBS. In terms of 
influencing the biological properties of sandy loam black soil, 
metal NPs form the following series:  Cu > Zn > Ni. First, this 
does not consistent with the existing hypothesis that the NPs 
toxicity depends only on their size and does not depend on 
the chemical nature of the element. Secondly, the oxides and 
water-soluble salts of these metals are characterized by a 
slightly different pattern, namely, Cu and Ni are more toxic 
than Zn. 

 
Table 3. Degree of decrease in biological parameters of Arenosols upon contamination with Cu, Zn and Ni NPs, % of control 

(average values for three doses of NPs). 

No Biological index Cu Zn Ni Average 
1 total number of bacteria 28 27 31 29 
2 Azotobacter sp. abundance 43 51 71 55 
3 catalase activity 76 75 88 80 
4 dehydrogenases activity 48 64 72 61 
5 the germination rate of radish seeds 23 32 48 34 
6 the length of the radish roots 18 26 33 26 
7 IIBS 54 58 67 60 
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Based on the results obtained, one can state that further 
study of the effect of NPs on the properties of the soil is 
necessary. Most publications related to NPs are devoted to 
their synthesis and application. At the same time, an increase 
in the scope of applications and the utilization capacity of NPs 
leads to the threat of their release into the environment and 
soil contamination. The potential risk and environmental 
impact are difficult to quantify and are not fully studied. 
Knowledge of the ultimate effects of NPs on the environment 
should be expanded, and appropriate guidelines should be 
developed to prevent contamination. 

 

5. CONCLUSION 
The degree of reduction in biological characteristics of the 

soil depends on the content of contaminating NPs. It was 
revealed that the total bacteria count, the length of radish 
roots and germination are the most sensitive indices to the 
presence of Cu, Zn, and Ni NPs. These indices have shown 
significant changes (more than 50%) caused by the impact of 
even a small pollutant dose of 100 mg kg-1. The activity of 
enzymes was the least sensitive index to the presence of Cu, 
Zn, and Ni NPs. However, a significant decrease was noted in 
these indices when the studied pollutants were introduced. 
The presence of Cu, Zn, and Ni NPs led to a decrease in the 
IIBS of sandy loam black soil. According to the results of the 
IIBS, Cu NPs had the strongest effect on the soil, while Ni NPs 
had the least effect. The conducted research confirmed the 
need for further study of the effect of NPs on the biological 
characteristics of different types of soils. This study confirmed 
the need for further study of the effect of NPs on the 
biological properties of soils in order to identify possible 
negative effects. For a better understanding of the negative 
consequences of the ingress of NPs into the soil, it is 
necessary to study a large number of pollutants, indices, soil 
types, as well as the mechanisms of their influence. 
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