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Coffee arabica species have already been affected by climate change, with socioeconomic 
implications. Smallholder farmers have encountered and will continue to confront issues 
in maintaining their coffee plants' productivity. This study aimed to determine which bio-
climatic characteristics are most beneficial to coffee production in current and future 
climate change scenarios. The responses of coffee distribution to climatic conditions were 
studied under the current, moderate representative concentration (RCP4.5), and worst 
representative concentration (RCP8.5) pathways using a bioclimatic modelling approach or 
the Maxent model. Multiple regression models (path and response optimizers) were used 
to parameterize and optimize the logistic outputs of plant distribution. Results showed that 
climatic factors such as total precipitation, precipitation seasonality, and mean 
temperature are the most important climatic factors in determining the success of C. 
arabica farming. Under the current conditions, total precipitation significantly benefits C. 
arabica whereas precipitation seasonality significantly affects it (P < 0.001). In the current 
condition, coffee responded neither negatively nor positively to the mean temperature, 
but positively in RCP4.5 and RCP8.5. It would also respond positively to increased total 
precipitation under RCP4.5 but negatively to rising precipitation under the RCP8.5. The 
average five top-optimal multiple responses of C. arabica were 75.8, 77, and 70% for the 
present, RCP4.5, and RCP8.5, respectively. The positive response of C. arabica to 
bioclimatic variables in the RCP4.5 scenario is projected to be much bigger than in the 
present and RCP4.5 scenarios (P < 0.001). As precipitation and temperature-related 
variables increase, the cultivation of C. arabica will increase by 1.2% under RCP4.5 but 
decrease by 5.6% under RCP8.5. A limited number of models and environmental factors 
were used in this study, suggesting that intensive research into other environmental 
aspects is needed using different models. 

How to Cite: Chalclchissa, F.B., Diga, G.M., Tolossa, A.R. (2022). Modeling of the responses of Coffee (Coffea arabica L.) 
distribution to current and future climate change in Jimma Zone, Ethiopia. Sains Tanah Journal of Soil Science and 
Agroclimatology, 19(1): 19-32. https://dx.doi.org/10.20961/stjssa.v19i1.54885    

 

1. INTRODUCTION 
Coffee is one of the most important major agricultural 

commodities traded across the world. It is mostly farmed by 
25–30 million smallholder farmers in around 80 tropical 
nations (Aderolu et al., 2014). The countries include Ethiopia, 
Indonesia, Brazil, and Costa Rica as the best coffee-growing 
countries (Bliss, 2017). However, the majority of the global 
yield comes from the top five producing countries, including 
Brazil, Vietnam, Colombia, Indonesia, and Ethiopia (Coffee: 
World Markets and Trade, 2019; Funk et al., 2012). Ethiopia is 
the first C. arabica producer from Africa with a 39% share and 
is the 5th country in the world with a nearly 2% share, and the 

annual coffee production of the country ranges from 200 to 
250 thousand tons (Chauhan et al., 2015; Gray & Brady, 
2016). 

Coffee is an important component of the overall economy 
and a major source of foreign currency for many coffee-
producing countries  (Samper & Quiñones-Ruiz, 2017).  More 
than 125 million families rely on the coffee industry to better 
their living conditions (Bliss, 2017). In Ethiopia, coffee 
production and marketing play a basic part in the social and 
financial lives of the country's population (Alemayehu, 2015; 
Minten et al., 2014). It contributes about 44% of the country's 
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foreign exchange (Aderolu et al., 2014), 10% of the gross 
domestic product, and over 25% of the populace of Ethiopia 
are dependent on coffee for their livelihoods (Woldesenbet 
et al., 2015). Coffee is also ingrained in the socio-cultural 
fabric of the society. The consumption habits coffee are 
perfectly matched to modern lifestyles, making it an essential 
commodity in the daily lives of a vast section of the world's 
population (Vegro & de Almeida, 2020). In Ethiopia, more 
than half of all the coffee produced in the country is drunk by 
the people, who utilize it not just to stimulate their minds but 
also to develop social capital and exchange information 
(Amamo, 2014; USDA Foreign Agricultural Service, 2019). 

Bioclimatic predictors are the ones that are the most 
closely linked to a species' physiological process. They provide 
information on temperature and precipitation conditions on 
a monthly, seasonal, and annual basis (O'Donnel & Ignizio, 
2012). Seasonal climatic conditions affect the bioclimatology 
of many plants in different ways (Chiou et al., 2015). 
Preseason warmer winters, for example, delay budburst and 
flowering greatly, whereas cold winter temperatures 
significantly encourage most plants to release budburst and 
flowering (Svoboda & Fuchs, 2017).  Rainfall availability, in 
addition to temperature, has a significant impact on plant 
bioclimatology and is extremely important to climate change 
(Pohlan & Janssens, 2010).  It is the primary factor that 
frequently regulates plant bioclimatology  (Song et al., 2016). 
Rainfall is responsible for dissolving minerals and 
carbohydrates and transporting them through the plants and 
controlling the degree of photosynthesis (Brázdil et al., 2015; 
Potopová et al., 2015).  

Increases and decreases in these bioclimatic factors are 
equally relevant when dragged on a specific C. arabica 
(Moraes et al., 2010). Many coffee-growing areas have 
already seen temperatures much beyond the mild 

temperature range of 18 to 22°C, which is normally best for 
coffee production with annual total precipitation of 800 to 
1200 mm (Camargo, 2010). Temperatures are expected to 
rise by about 2 degrees Celsius on average globally until the 
mid-century (Steffen et al., 2018). This rising temperature 
scenario may cause the current coffee locations to change. 
The higher temperatures, extended droughts, and severe 
rains and frosts have a variety of effects on coffee production, 
ranging from shrinking coffee-growing regions to increasing 
pest and disease pressure (Bunn, 2015). It can limit the crop 
plant’s physiological range, limiting its distribution to varying 
degrees (Deribe, 2019; Somarriba & López Sampson, 2018). 
Under high temperatures, C. arabica is exposed to high 
irradiance and absorbs far more energy than what is required 
for photosynthesis, resulting in energy overpressure and, 
commonly, leaf overheating (Moraes et al., 2010).  Significant 
coffee crop production losses and substantial reductions in 
areas suitable for the coffee landscape will also be caused by 
the end of the current century (Moat et al., 2017) and even 
the extinction of wild populations of C. arabica are all related 
to the impacts of rising air temperatures (Davis et al., 2012). 

Despite Ethiopia's significant socio-economic benefits 
from coffee, climate change's impact on C. arabica farming 
has gotten little attention until recently. Examining the 
impact of bioclimates across time is therefore beneficial to 
species conservation. This can give biologists and ecologists 
more useful and multi-scaled climate data to assist studies on 
species' responses to the changing climatic conditions. The 
goal of this study was to apply machine learning algorithms to 
evaluate the reaction of the C. arabica distribution to 
bioclimate variables and determine the best setting for each 
bioclimatic factor for present and future climate change 
scenarios. 

 

 
Figure 1. Map of the study area 
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2. METHODOLOGY 
2.1. Description of the study area 

The study was conducted in the Jimma Zone in Oromia 
Regional State, Ethiopia. Jimma is one of the country's major 
coffee-producing administrative zones. It is located 357 
kilometers southwest of Addis Ababa. It is situated between 
7.13° and 8.56° N and 35.49° and 38.38° E and has an 
elevation of 871–3231 m above sea level (Fig. 1). 

Southwest Ethiopia has a tropical climate. However, 
because of the highlands (mainly over 1000 meters), it may 
be categorized as cool-tropical  (Moat et al., 2017). The Jimma 
zone is characterized by a cool-tropical highland climate 
featuring heavy precipitation, warm temperatures, and a 
protracted rainy season. According to conventional agro-
ecological zonation, there are three primary climatic zones, 
namely subtropical, tropical, and temperate zones, with 78, 
10, and 12% coverage, respectively (National Meteorological 
Services Agency, 2005). The annual rainfall ranges from 1,200 
mm to 2,500 mm, with an average annual minimum and 
maximum temperatures of 11°C and 28°C, respectively. 
Twelve of the twenty districts are highly notable for coffee 
production, demonstrating how vital the crop is to local and 
rural residents' livelihoods (Diro et al., 2019). 
 

2.2. Data collection  
2.2.1. Species location data 

Two hundred twenty-four geographical coordinates or 
points of data where C. arabica are found were acquired 
through field surveys, literature reviews, and online sources; 
the Global Biodiversity Information Facility (GBIF) database, 
which can be accessed at http://www.gbif.org. This gathered 
location data was organized into three columns: species, 
longitude, and latitude, as stated by Kwon et al. (2019). The 
spatially auto-correlated data was tested to reduce numerous 
data points within 25 square kilometers into a single point to 
avoid the model’s overfitting to environmental bias (Boria et 
al., 2014). 

 
2.2.2. Climatic data  

The Paleoclimate database was used to retrieve historical 
bio-climatic variables recorded at a high resolution of 30 
seconds between 1979 and 2013. It's a free resource that 
displays surface temperature and precipitation gauges from 
the General Circulation Model at http://www.paleoclim.org. 
The GCM outputs were scaled down to include verified 
sources that can shed light on the recent past and biological 

proxies, and biases were addressed (Brown et al., 2018; 
Karger et al., 2017). However, future bioclimatic data that was 
recorded from 2041 to 2060 was downloaded from the 
WorldClim dataset, available at http://www.worlclim.org. 
This data was also produced by global climate models (GCMs) 
(Fick & Hijmans, 2017). The RCP4.5 and RCP8.5 climate 
change scenarios from the Intergovernmental Panel on 
Climate Change's fifth assessment report  (Intergovernmental 
Panel on Climate Change, 2014) were used for this study. The 
averages of bioclimatic variables were obtained from four 
models, such as ACCESS1-O; GFDL-ESM2G; HadGEM2-AO, 
and HadGEM2-ES). These models have a low degree of 
interdependency, allowing for a more accurate 
representation of uncertainty in climate projections (Karger 
et al., 2017). 

These variables included: Annual mean temperature 
(Bio1), Mean diurnal range (Bio2), Isothermality (Bio3), 
Temperature seasonality (Bio4), Max temperature of the 
warmest month (Bio5), Min temperature of the coldest 
month (Bio6), Temperature annual range (Bio7), Mean 
temperature of the wettest quarter (Bio8), Mean 
temperature of the driest quarter (Bio9), Mean temperature 
of warmest quarter (Bio10), Mean temperature of coldest 
quarter (Bio11), Total annual precipitation (Bio12), 
Precipitation of wettest month (Bio13), Precipitation of driest 
month (Bio14), Precipitation seasonality (Bio15),  
Precipitation of wettest quarter (Bio16), Precipitation of 
driest quarter (Bio17), Precipitation of warmest quarter 
(Bio18), and Precipitation of coldest quart (Bio19).  

 

2.3. Data preparation  
Prior to machine learning, each dataset was pre-arranged 

according to the format of the Maxent model. Global 
environmental layers are raster files, so that they were first 
extracted into a study area before being converted to the 
format of the American Standard Code for Information 
Interchange (ASCII). The correlation between the 19 
bioclimatic variables was investigated, and then, 9 variables 
having absolute values of the correlation coefficient of less 
than 0.5 (R < 0.5) was maintained for model training (Phillips 
& Dudík, 2008). Both environmental variables and sample 
species' geographical location were then, translated into a 
projected coordinate system, using ArcMap software (Paquit, 
2019). The two sets of data were uploaded when all of the 
necessary steps had been completed, and the Maxent model 
was run following the steps described in  Paquit (2019).

 

 
Figure 2. Model performance in discriminating affected and none affected coffee habitat by climatic factors associated with 

Current (a) and 2050s under the RCP4.5 scenario (b) and RCP8.5 scenario (c) 

http://www.gbif.org/
http://www.paleoclim.org/
http://www.worlclim.org/
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2.3.1. Model validation  
 The model's performance was assessed by plotting a 

sensitivity vs specificity graph following the procedure of . 
Phillips et al. (2017) and producing ROC statistics. The 
Receiver Operating Characteristic (ROC) curve is defined using 
the Area Under the Curve (AUC), which ranged from 0.5 to 1 
(Halligan et al., 2015). According to Pearson and Dawson 
(2003), the AUC threshold was classified into five categories 
to characterize model performance in scientific methods. The 
model's performance is said to be "excellent or perfect" if the 
value of AUC is equal to 1, "very good" if the AUC's value is 
less than 1 and greater than or equal to 0.9, "good" if the 
AUC's value is less than 0.9 and greater or equal to 0.8, "fair" 
if the AUC's value is less than 0.8 and greater or equal to 0.7, 
and "poor or fail" if the AUC's value is less than 0.7. A random 
ranking has a mean of 0.5 AUC value. Thus, a higher AUC value 
shows the greatest model performance for distinguishing 
between affected and non-affected species' environments 
(Mas et al., 2013). 

 

2.4. Statistical analyses 
After modeling the species distribution, the logistic 

outputs of the species distribution from the Maxent model 
were subjected to multiple regression models using Amos 
and Minitab software to assess coffee plant responses to 
combined effects of bioclimatic variables and to determine 
the optimal setting of these parameters for the coffee 
plants. 

 

2.4.1. Multiple responses analyses  
Multiple response analyses were carried out for C. arabica 

as a response variable and bio-climatic factors as explanatory 
variables, reflecting plant dispersion under current and future 
bioclimatic change. This statistical study was conducted 
utilizing the Analysis of Moment Structures (Amos) program 
version 23. The chi-square statistic (Chi2  and P-value) were 
employed to assess the quality of model fit, where the lower 
the chi-square and the higher the P-values associated with 
the chi-square, the better the model fit (Cuneen & Tobar, 
2015; McHugh, 2013).  

 
 

2.4.2. Multiple responses optimization  
A multiple regression optimizer was used to evaluate the 

best responses of C. arabica to bio-climatic factors using 
Minitab’s response optimizer tool. Response optimization is a 
technique for discovering the best combination of factors and 
settings for a single or a series of response variables. This is 
important for determining the impacts of various bioclimatic 
factors on C. arabica cultivation. For the optimization, plots 
were created for C. arabica vs bioclimatic variable based on 
current, RCP4.5, and RCP8.5 scenarios of the 2050s. Before 
computing response optimization for each climatic scenario, 
the goodness of fit of the model was assessed using R-
squared. R-Squared is a statistical measure of fit that indicates 
how much variation in a dependent variable in a regression 
model is explained by the variation in independent variable(s) 
(Gelman et al., 2019; Wang et al., 2017). The goodness-of-fit 
test is characterized by the difference between the actual and 
predicted values in the model description (Wan & Davis, 
2020). If the R-squared value is less than 0.3, it is typically 
regarded to have no or very weak impact size. If the R-
squared value is greater than 0.3 and less or equal to 0.5, the 
effect size is deemed weak or lower; if the R-squared value is 
greater than 0.5 and less or equal to 0.7, the impact size is 
considered moderate; and if the R-squared value is greater 
than 0.7, the impact size is considered strong (Moore, 2001). 

 

3. RESULTS  
3.1. Models’ performance evaluations results 
3.1.1. MaxEnt model 

The validation test results showed that the model worked 
well, with accuracy levels of more than 80% under all of the 
climate change scenarios studied. Its accuracy level was 
classified as "good" as enough to discriminate between coffee 
settings influenced by climate change and those that were not, 
according to the findings (Fig. 2). The model training and test 
outcomes exhibited mean AUC values of 0.805 (80.5%) and 
0.801 (80.1%), respectively, under the present conditions. 
Similarly, the mean AUC values for the model training and test 
outcomes using the RCP4.5 scenario were 0.805 (80.5%) and 
0.821 (82.1%), respectively, whereas they were 0.802 (80.2%) 
and 0.815 (81.5%) for the RCP8.5 scenario. 

 
Table 1. Contributions of bioclimatic variables to the Maxent model as a percentage 

Code Bioclimatic Variables Current 
2050s 

RCP4.5 RCP8.5 

Bio1 Annual mean temperature  3.7 7.4 10.3 
Bio3 Isothermality  5.7 3.3 3.1 
Bio4 Temperature seasonality  3.1 4.2 0.4 
Bio7 Annual temperature range 0.5 0.9 1.2 

Bio12 Total annual precipitation  55.1 62.8 64.8 
Bio13 Precipitation of the wettest month  0.9 5.4 5.5 
Bio15 Precipitation seasonality 17 8.1 8.8 
Bio18 Precipitation of the warmest quarter 5.4 2.2 1 
Bio19 Precipitation of the warmest quarter  8.5 5.7 4.9 
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Note: The numbers displayed on curved and straight arrows represent the coefficient of multi-co-linearity among the bioclimatic variables 

and standardized regression weights between the explanatory and the response variables, respectively.     

Figure 3. Path diagram showing the effect of bioclimatic variables on the C. arabica distributions under the scenarios of 
Current (a) RCP4.5 (b) and RCP8.5 (c).  

 

3.1.2. Multiple regression models 
Path Model:  A Chi-squared analysis result is depicted in 

Fig. 3. The Chi-square and P-values in the top right corner of 
the diagram and the R-square values over the heads of 
response variables represent the model's goodness of fit. 
Under the present and 2050s RCP4.5 and RCP8.5 climate 
scenarios, chi-square values were determined to be 0.18, 
0.138, and 0.126, respectively. For the current and 2050 
RCP4.5 and RCP8.5 climate scenarios, the corresponding p-
values are 0.848, 0.783, and 0.835, respectively. This 
indicated that the unconstrained model fitted the data very 
well. Because all of the Chi-square was minimal and the p-
values were statistically insignificant, the model's fit test was 
appropriate to simulate C. arabica's distribution response to 
bioclimatic variables (McHugh, 2013).  

Response optimizer Model: Similarly, the model's quality 
of fit to simulate the response and predictor variables is 
indicated by the R-square analysis. As a result, the R-squared 
values for current, RCP4.5, and RCP8.5, respectively, were 
64.98 %, 70.14 %, and 73.75 %, indicating that bioclimatic had 
a moderate impact on C. arabica in Current and a large impact 
in RCP4.5 and RCP8.5 climate change scenarios. To put it 
another way, the error variance of coffee under each of the 
three climatic conditions would be around 33%, 27%, and 
32% of the variation in the coffee itself, respectively. 

 

3.2. Climatic variables’ contributions to the model’s 
performance 

Table 1 demonstrates how each bioclimatic variable 
affects the model's performance under the present and 
RCP4.5 and RCP8.5 of the 2050s climate change scenarios.  
The results revealed that each of the variables offered the 
most important information for the model's performance 
under all climate change scenarios. In the current and 2050s 
RCP4.5 and RCP8.5 climate change scenarios, the percentage 
contributions of total precipitation (Bio12) were determined 
to be 55.1%, 62.8%, and 64.8%, respectively. The percentage 
contributions of precipitation seasonality (Bio15) were 
determined to be 17%, 8.1%, and 8.8%, respectively, under 
present and 2050s RCP4.5 and RCP8.5. Annual mean 
temperature (Bio) contributed 3.7%, 7.4%, and 10.3% under 

current and predicted 2050s RCP4.5 and RCP8.5, respectively. 
This suggests that precipitation-related factors, in general, 
had a much bigger influence on C. arabica from 1979 to 2013, 
and will continue to have a significantly greater impact on the 
crop until the next 2050s, with total precipitation and 
precipitation seasonality in particular.  

 

3.3. Responses of Coffee (Coffea arabica L.) to current 
and future bioclimatic factors  

3.3.1. Current response analyses  
The model's diagnostic results reveal an asymmetric 

relationship between coffee and bioclimatic parameters, with 
coffee having a positive relationship with some bioclimatic 

factors but a negative relationship with others. Coffee has 
been shown to be negated and significantly associated with 
precipitation in the warmest quarter (Bio18) and the coldest 

quarter (Bio19) over the last three decades, with maximum 
probability values of-0.01 and -0.001 (P < 0.05), respectively. 
This means that when the Bio18 and Bio19 variables were 

increased by one unit, C. arabica declined by 1% and 0.1%, 
respectively (P < 0.05). Changes in Bio18, in particular, 
exhibited a significant negative impact on C. arabica. It also 

exhibited a non-significant negative association with the 
yearly mean temperature (Bio1) at P < 0.05. Temperature 
seasonality (Bio4), annual temperature range (Bio7), total 

precipitation (Bio12), and precipitation seasonality (Bio15) 
were all shown to have a substantial and positive relationship 
with C. arabica. The maximum likelihoods’ values of the 

variables were 0.001, 0.008, 0.001, and 0.018, for Bio4, Bio7, 
Bio12, and Bio15, respectively. When Bio4, Bio7, Bio12, and 
Bio15 were grown in parallel to one unit, C. arabica 

distribution grew by 0.1%, 0.8%, 0.1%, and 1.8%, respectively 
(Table 2). Bio15 was the most important variable that trained 
the distribution of C. arabica, while Bio7 was the second most 

important variable. 
The path model, on the other hand, quantifies the 

magnitude of each influence using normalized regression 

weight. The negative standardized regression weights between 
the coffee plant and explanatory variables were estimated to 

be -0.22, -0.20, and -0.48 for Bio15, Bio18, and Bio19, 
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Table 2. C. arabica and bioclimatic factors multiple regression weights in Current (1979-2013) 

Predictor 
Variables 

Maximum 
Likelihood 

Standardized 
R weight 

Standard Error. Critical Ratio. Sign 

Bio1 -0.014 0.09 0.012 -1.500 0.126 
Bio3 0.070 0.51 0.018 1.949 0.156 
Bio4 0.001 0.41 .000 7.580 *** 
Bio7 0.008 0.49 0.002 4.397 *** 

Bio12 0.001 0.22 .000 6.88 *** 
Bio13 0.000 0.67 .000 0.100 0.924 
Bio15 0.018 -0.22 0.003 5.275 *** 
Bio18 -0.010 -0.20 0.00 -2.893 0.015* 
Bio19 -0.001 -0.48 0.001 -3.639 *** 

Note: ***, **, and * indicates a significant relationship between response and explanatory variable at 𝛂 =0.001, 0.01, and 0.05, 
respectively.  

 
respectively, under current climatic conditions, whereas the 
positive standardized regression weights, respectively, for 
Bio1, Bio3, Bio4, Bio12, and Bio19 were 0.09, 0.51, 0.47, 0.49, 
0.22, and 0.67 (Table 2). When the explanatory factors rose 
by one standard deviation, the values of the standardized 
regression weights of the coffee distribution estimates 
dropped for negative values and rose for positive regression 
weights. 

 

3.3.2. Future responses analysis under RCP4.5 and 
RCP8.5 climate scenarios  

In the RCP4.5, the association between C. arabica and 
bioclimatic variables was estimated to be significantly 
stronger (P < 0.05), except for total precipitation (Bio12) and 
precipitation in the warmest quarter (Bio18). In the next 
2050s, C. arabica is expected to fall, with an increase in 
precipitation seasonality (Bio15), as well as precipitation in 
the warmest (Bio18), and coldest (Bio19) quarters. The 

maximum likelihood’s values of Bio15, Bio18, and Bio19 were 
estimated to be -0.018, -0.001, and -0.001, respectively (Table 
2). This suggests that C. arabica's cultivation will be 
significantly decreased by 1.8%, 0.1%, and 0.1%, respectively, 
when Bio15, Bio18, and Bio19 increase. On the other hand, C. 
arabica was promisingly associated with annual mean 
temperature (Bio1), isothermality (Bio3), temperature 
seasonality (Bio4), annual temperature ranges (Bio7), total 
precipitation (Bio12), and precipitation of the wettest months 
(Bio13). The maximum likelihood values for Bio1, Bio3, Bio4, 
Bio7, Bio12, and Bio13 were predicted to be 0.006, 0.055, 
0.001, 0.096, and 0.005, respectively (Table 2), suggesting 
that percentage increases of C. arabica will be 0.6, 5.5, 0.1, 
9.6, 0.2, and 0.5, respectively, when these variables are 
increased by one unit. Among these bioclimatic variables, 
annual temperature ranges (Bio7) will be the most variable 
factor in increasing C. arabica cultivation, followed by 
isothermality (Bio3). 

 

 

Table 3. C. arabica and bioclimatic factors multiple regression weights in RCP4.5 and RCP8.5 (2041-2060) 

Predictor 
variables 

Scenarios 
Maximum 
likelihood 

Standard 
R. weight 

Standard Error Critical Ratio Sign 

Bio1 
RCP4.5 0.006 0.07 0.007 3.598 *** 
RCP8.5 0.019 0.20 0.014 -3.394 0.01** 

Bio3 
RCP4.5 0.055 0.47 0.008 6.506 *** 
RCP8.5 -0.046 0.20 0.008 -5.766 *** 

Bio4 
RCP4.5 0.001 0.51 0.00 8.856 *** 
RCP8.5 0.001 0.78 0.00 0.685 0.362 

Bio7 
RCP4.5 0.096 0.22 0.025 3.758 *** 
RCP8.5 0.063 0.73 0.024 2.626 0.01** 

Bio12 
RCP4.5 0.002 -4.31 0.001 -3.048 0.01** 
RCP8.5 -0.004 -1.97 0.00 -4.572 *** 

 
Bio13 

RCP4.5 0.005 5.30 0.001 2.50 0.621 
RCP8.5 -0.007 2.91 0.001 -5.909 *** 

Bio15 
RCP4.5 -0.018 1.26 0.003 -5.275 *** 
RCP8.5 0.02 1.13 0.003 6.178 *** 

Bio18 
RCP4.5 -0.001 -0.35 0.00 -1.298 0.122 
RCP8.5 -0.001 0.20 0.00 -2.838 0.01** 

Bio19 
RCP4.5 -0.001 -0.18 0.00 -2.456 0.014* 
RCP8.5 -0.001 -0.21 0.00 -3.762 *** 

Note: ***, **, and * indicates a significant relationship between response and explanatory variable at 𝛂 = 0.001, 0.01, and 
0.05, respectively.  
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Note: the gray bars indicate the variables that don't assist explain additional information in C. arabica distributions 

Figure 4. Response and bioclimatic variable data’s goodness of fit in regression model constructions 
 

In the RCP8.5, the changes in informative factors of Bio3, 
Bio12, Bio13, Bio18, and Bio19 would be expected to exert an 
important pressure on C. arabica cultivation (P < 0.05). The 
probability values of coffee production were assessed to be -
0.046, -0.004, -0.007, -0.001, and -0.001 for Bio3, Bio12, 
Bio13, Bio18, and Bio19, respectively. This implies that 
increasing each of those variables by one unit reduces the C. 
arabica cultivation by 4.6, 2%, 0.4%, 0.7%, 0.1%, and 0.1%, 
respectively. However, the promising effects of climatological 
factors on coffee cultivation are expected as a result of an 
increase in Bio1, Bio4, Bio7, and Bio15. Once every 
climatology issue increases by one unit, C. arabica is expected 
to increase by 1.19%, 4.6%, 6.3%, and 2%, respectively, for 
Bio1, Bio4, Bio7, and Bio7 (Table 3). 

Furthermore, the standardized regression weights, which 
disclose the standard deviation of the covariates, show that 
C. arabica reacted to predictive bioclimatic components 
unexpectedly. The values of standard regression weight for 
RCP4.5 were 0.07, 0.47, 0.51, 0.22, -4.31, 5.30, 1.26, 0.20, and 
0.18 for Bio1, Bio3, Bio4, Bio12, Bio13, Bio15, Bio18, and 
Bio19, respectively. Additionally, the standardized regression 
weights under RCP8.5 were estimated to be 0.20, 0.78, 0.77, 
0.73, 1.97, 2.91, 1.13, -0.35, and -0.21 for Bio1, Bio3, Bio4, 
Bio12, Bio13, Bio15, Bio18, and Bio19 (Table 3). 

 

3.4. Optimization of bioclimatic variable for coffee 
(Coffea arabica L.) cultivation 

Fig. 5 shows the response lines or curves between C. 
arabica and explanatory factors for current and RCP4.5 and 
RCP8.5 climate change scenarios of the 2050s. The red line in 
each bio-climatic graph demonstrates the prerequisites of 
bioclimatic factors for optimum C. arabica production. 

 

3.4.1. Current response optimization   
The optimal setups of eligible factors for C. arabica 

cultivation are displayed in Table 4. Seven influential bio-
climatic parameters such as Bio3, Bio4, Bio7, and Bio12, 
Bio15, Bio18, and Bio19 were optimized for response 
variables, while Bio1 and Bio13 were reserved from the model 
since they had no assisted information on the likelihood of 
coffee cultivation under present climate conditions. The five 

bio-climatic variables that increased the likelihood of C. 
arabica cultivation were as follows: 76.33–77.05% for Bio3, 
1039–1085.27% for Bio4, 19.77–20.05°C for Bio7, 1649.18–
1871 mm for Bio12, 61.63-67.03 for Bio15, 383.54–
447.75mm for Bio18, and 378.45–502.30mm for Bio19 (Table 
4). The maximum probability distribution of C. arabica was 
achieved at 82% when all bioclimatic variables were 
measured concurrently at Bio3; 1075.01%, Bio4; 20.09°C, 
Bio7; 20.09°C, Bio12; 1871.40 mm, Bio1; 567.03%, Bio1; 
8436.21 mm, and 502.37 mm of Bio19. If the parameters 
exceed or drop further beyond these indicated limits, the 
coffee crop distribution will be declined.  
 

3.4.2. Future response optimization  
The top five optimal values of bio-climatic factors for 

maximum C. arabica production (72–83%) were also 
set under RCP4.5. The best values were estimated to be 
ranged between 22.50–23.17°C, 76–81%, 105.13–109.13%, 
17.53–20.07°C, 1777.33-2192.67 mm, 319.3–376.33 mm, and 
587-813 mm, respectively, for Bio1, Bio3, Bio4, Bio7, Bio12, 
Bio15, and Bio19. When these important factors are 
combined, they significantly help to increase C. arabica 
production at certain optimal levels for each component. 
However, it will be disabled in areas where the predictors are 
less than or more than these optimum levels, as decided by 
this predefined study (Table 5). Bio13 and Bio18 are flimsy 
variables that had little or no effect on future C. arabica and 
were eliminated from the model early on (Fig. 4b). 

Similarly, the values of bio-climatic variables that were 
closer to the optimal solution were estimated as optimal 
settings of the input variables for predicting C. arabica 
distribution under the RCP8.5, as shown in Table 6. The 
maximum estimated probability values of the C. arabica 
distribution ranging from 67–75% were estimated to be found 
in landscapes with 23.50–23.80°C of Bio1, 72.67–75.53% of 
Bio3, 19.20–19.90°Cof Bio7, 1685.67–1900 mm of Bio12, 
315.33–343 mm of Bio13, 51.33–77.67% of Bio15, 180–364.33 
mm of Bio18, and 369–943.33 mm of Bio19. This implies that 
above or below these optimal values of these explanatory 
variables the C. arabica cultivation would be reduced.   
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Note: the red lines indicate the variable optimal settings while blue lines show projected coffee at various bioclimatic 

variable settings 

Figure 5: Optimum bioclimatic variables for coffee cultivation under various climate change scenarios 
 

Table 4. The top five alternative optimum bioclimatic factors for C. arabica growth in the current state (1979–2013) 

No Bio3 (%) Bio4 (%) Bio7 (℃) Bio12 (mm) Bio15 (%) Bio18 (mm) Bio19 (mm) C. arabica 

1 77.05 107.5 20.09 1871.4 67.03 436.21 502.3 0.82 

2 76.55 108.53 19.98 1737.49 62.59 415.02 378.45 0.77 

3 76.67 105.53 19.95 1815.5 63.97 447.75 590.12 0.75 

4 76.33 105.03 20.05 1649.18 62.33 383.54 368.61 0.73 

5 76.52 103.96 17.70 1746.02 61.63 420.84 382.35 0.72 

Note: the bolded numbers are the values of explanatory variables that best suit for higher coffee production under the current 
climate change scenario 

 

Table 5. The top five alternative optimum bioclimatic factors for C. arabica growth under the RCP4.5 (2041-2060) 

No Bio1(℃) Bio3 (%) Bio4 (%) Bio7 (℃) Bio12 (mm) Bio15 (%) Bio19 (mm) C. arabica 

1 22.73 77.00 108.07 19.90 1850.33 71.00 587.00 0.83 

2 22.80 76.33 109.13 20.03 1722.00 75.33 688.33 0.79 

3 22.97 76.67 106.17 19.83 1649.67 71.63 619.67 0.77 

4 23.17 76.33 105.13 20.07 1757.67 73.27 736.00 0.74 

5 22.50 81.00 100.70 17.53 1768.00 76.33 813.00 0.72 

 Note: the bolded numbers are the values of explanatory variables that best suit for higher coffee production in the future 
2050s under the RCP4.5 climate change scenario. 

 

Under the RCP8.5 climate change scenarios, the Bio4 variable 
was estimated to be a non-significant contributor to the 
determination of C. arabica cultivation (Fig. 4c). 

 

3.5. Coffee (Coffea arabica L.) response comparison 
analyses  

Coffee arabica's response comparison among the 
targeted climate change scenarios analysis results is shown in 
Fig. 6. The five top logistic output mean values reveal that 
there are significant differences in C. arabica distribution in 
the three climate change scenarios (P < 0.05). The mean 
values of logistic output in % were estimated to be 75.8, 77, 
and 70.2, respectively, under the current, RCP4.5, and RCP8.5 
climate change scenarios. The mean difference between 

RCP4.5 and the current were 1.2%, between RCP8.5 and 
RCP4.5 it was 6.8%, and between RCP8.5 and current it was 
5.6% (Fig. 6d, e, and f). The average value of C. arabica 
likelihood under RCP4.5 would be significantly higher than 
those under the current and RCP8.5 scenarios (P = 0.0003). 

 

4. DISCUSSIONS 
Because data inputs and methodological choices affect 

the dependability and usefulness of model predictions, it's 
critical to evaluate the model's accuracy and utility. In the 
present study, the Maxent was made to avoid data overfitting 
and underfitting and to have a low generalization error, which 
is a measure of how well it predicts. The precision with which 
Maxent and multiple regression models predict the 
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association of C. arabica species and bioclimatic data was 
assessed. All reflected a better understanding of the 
relationship between inputs and outputs under the three 
climate scenarios: current and RCP4.5, and RCP8.5 of the next 
2050s. The maxEnt model's threshold was significantly higher 
than the random model’s threshold (0.5). It performed well 
(greater than 80%) in distinguishing the presence and 
absence of the C. arabica species in all three scenarios. Total 
precipitation (Bio12), precipitation seasonality (Bio15), and 
annual mean temperature (Bio1) played a greater role in 
delivering the higher efficiency of the models. These results 
are consistent with numerous studies that found the Maxent 
Model's accuracy levels to be between 80% and 90% in 
various research areas (Angelieri et al., 2016; Padalia et al., 
2014; Pramanik et al., 2018; Qin et al., 2017).  

Present results also indicate that the recruited Path model 
for response analyses has the capability to successfully define 
the association between C. arabica and bioclimatic factors. 
The chi-square values were lower while the p-values were 
higher (P > 0.05) for each climatological test (Fig. 3). This 
suggests that the regression model is effective in explaining 
the association between C. arabica and bioclimatic variables. 
These model evaluation results are in line with the 
observations of Melesse (2014), who reported the chi-square 

statistics such as P-values of 0.894 and chi-squared of 0.018 
in his dissertation. 

The multiple regression model also successfully 
performed the response optimization for C. arabica with the 
bioclimatic factors. The R-square, which represents the 
degree of variation in the response variables, indicates that 
the combined explanatory variables explain more than 64% 
of the variation in the coffee itself in each climate change 
scenario. During response optimization, the variables like 
Bio1 and Bio13 in the current scenario, Bio13 and Bio18 in 
the RCP4.5 scenario, and Bio4 in the RCP8.5 scenario were 
dropped from the model as the results of the variables had 
no significant contribution to the model’s goodness of fit 
(Fig. 4a, b, and c). The present model’s goodness of fit is 
more efficient than the result of Yuvaraj (2020), which 
showed 46.3% coefficient of determination (R2) while 
applying a regression model for the responsiveness of land 
surface temperature to the Normalized Difference 
Vegetation Index (NDV) in North India using a regression 
model 

 The MaxEnt model’s diagnostic results indicate that total 
precipitation (Bio12), precipitation seasonality (Bio15), and 
annual mean temperature (Bio1) were shown to have a 
greater impact on current C. arabica than any other variables.  

 
Figure 6.  Comparative assessments of C. arabica distribution under three climate change scenarios: a) current, b) RCP4.5, 

and c) RCP8.5 
 
Table 6. The top five alternative optimum bioclimatic factors for C. arabica growth under the RCP8.5 (2041-2060) 

No Bio1 (℃) Bio3 (%) Bio7 (℃) Bio12 (mm) Bio13 (mm) Bio15 (%) Bio18 (mm) Bio19 (mm) C. arabica 

1 23.77 73.67 19.47 1806.00 319.33 77.00 350.67 369.00 0.75 

2 23.80 72.67 19.60 1900.00 343.00 73.33 364.33 377.00 0.71 

3 23.67 75.33 19.20 1759.67 324.00 76.67 196.00 384.00 0.70 

4 23.50 75.00 19.27 1759.00 238.67 51.33 363.67 877.67 0.68 

5 23.50 75.00 19.50 1685.67 315.33 77.67 180.00 943.33 0.67 

Note: the bolded numbers indicate values of explanatory variables that best suit for higher coffee production in the future 
2050s under the RCP8.5 climate change scenarios 
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The distribution of possible habitats for C. arabica in its 
native regions was mostly determined by total precipitation. 
The present results coincide with the report of Abolmaali et 
al. (2018), who used the maximum entropy model to 
discover that the two precipitation (Bio12 and Bio19) and 
two temperature (Bio5 and Bio8) variables, notably 
elevation, are the most representative variables in regions 
of concern for vulnerable Daphne mucronata plant species 
habitats in central Iran. According to  Chemura et al. (2016), 
precipitation-related factors were more relevant in 
evaluating suitability for coffee cultivation in Zimbabwe's 
eastern highlands. Over 70% of the climate suitability of C. 
arabica was determined by two precipitation-related 
variables (Bio15 and Bio19) in eastern Zimbabwe 

According to the response analysis, changes in each 
bioclimatic variable had a substantial influence on C. arabica 
cultivation under present and future climate conditions. The 
rising extreme precipitation factors (Bio18 and Bio19) 
significantly declined C. arabica cultivation, although the 
rising two precipitation-related variables (Bio12 and Bio15) 
and two temperature-related variables (Bio4, and Bio7) 
significantly improved it during the last three decades. 
Similarly, despite somewhat predicted climate change 
prevention and adaptation measures under RCP4.5 scenarios, 
changes in precipitation-related factors are expected to be 
the most limiting factor in C. arabica production in the future 
2050s. Three precipitation-related factors (Bio15, Bio18, and 
Bio19) will continue to negatively affect C. arabica cultivation 
under RCP4.5, whereas four temperature-related variables 
(Bio1, Bio3, Bio4, and Bio7), as well as two precipitations 
(Bio12 and Bio13), will have a significant beneficial impact 
(Table 3). Furthermore, in the RCP8.5 climate change 
scenario, increases in precipitation-related factors (Bio12, 
Bio13, Bio18, and Bio19) as well as isothermality (Bio3) will 
dramatically reduce C. Arabic, although temperature-related 
variables (Bio1 and Bio7) and precipitation seasonality (Bio15) 
are projected to have a favorable effect on the coffee crop 
distribution. 

Despite the scarcity of data on C. arabica's responses to 
each bioclimatic factor, several studies have found that 
current and future climate conditions pose a threat to C. 
arabica cultivation in subtropical and tropical zones. The 

present results are consistent with those reported by  Iscaro 
(2014), who studied the impact of climate change on coffee 
production in Colombia and Ethiopia. Because C. arabica has 
such particular growing needs, even little variations in 
temperature and precipitation might destroy the plant. The 
health of these coffee species in Colombia is being 
jeopardized by increased rainfall, while rapidly rising 
temperatures are killing vegetation at an alarming pace in 
Ethiopia. The results of (Moat et al., 2017), who studied 
Ethiopia's coffee sector resilience potential in coffee-growing 
zones, reported that precipitation-related variables (Bio12 
and Bio15), as well as annual mean temperature (Bio1), are 
the most determinantal factors of C. arabica’s adaptability to 
climate change. In the absence of considerable interventions 
by the 2080s, the dispersion potential of the coffee plant will 
be lowered by 39%–59%, according to this assessment. These 
results are also consistent with those of Wang et al. (2015), 
who found that C. arabica species in Uganda's east, 
southeast, and northwest areas will be negatively affected by 
the seasonality of precipitation (Bio115) and annual mean 
temperature (Bio1). The results of Abdelaal et al. (2019), 
Chemura et al. (2016), and  Mighty (2015) emphasize that the 
annual average temperature and total precipitation, which 
are the most critical determinants in defining climatic 
suitability for coffee production, appear to be very important 
to the crop plant's production. 

The current research also sought to determine the 
optimum settings for joint bioclimatic factors that are needed 
for C. arabica production under each climate change scenario. 
Table 7 shows the maximum possibility of coffee cultivation 
under present and future climate change scenarios, with the 
minimum and maximum ranges placed between them. The 
higher possibility of C. arabica cultivation (72%–82%) was 
observed in coffee-producing landscapes with total 
precipitation of 1746–1871.4 mm, annual temperature ranges 
of 17.10–20.09°C, and other precipitation and temperature-
related variables (Table 4). However, there was no significant 
impact of the annual mean temperature (Bio1) on coffee 
cultivation under current climatic conditions (Table 4).  

A combination of bioclimatic factors given in Table 7, 
including an annual mean temperature range of 22.5–22.73°C 
and total precipitation of 1768.33–1850.33 mm, will be  

Table 7. Optimal multiple responses of C. arabica to bioclimate factors; current, RCP4.5 and RCP8.5 scenarios   

Variables 
Current RCP4.5 RCP8.5 

Lower Upper Lower Upper Lower Upper 

Bio1(℃)  - - 22.50 22.73 23.50 23.77 

Bio3 (%) 76.52 77.05 77.00 81.00 73.67 75.00 

Bio4(%) 103.96 107.50 100.70 108.07 - - 

Bio7 (℃) 17.11 20.09 17.53 19.90 19.50 19.47 

Bio12 (mm) 1746 1871.40 1768.33 1850.33 1685.67 1806.00 

Bio13 (mm) - - - - 315.33 319.33 

Bio15 (%) 67.03 61.63 71.00 76.33 77.00 77.67 

Bio18 (mm) 420.84 436.21 - - 180.00 350.67 

Bio19 (mm) 502.30 382.35 587.00 813.00 943.33 369.00 

Logistic output (%) 72.00 82.00 72.00 83.00 67.00 75.00 
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required to keep C. arabica production at 72–83% under 
RCP4.5 climate scenarios. This is expected to be significantly 
higher than those under the current and RCP8.5 scenarios (P 
= 0.0003). This means that implementing medium-scale 
climate change mitigation and adaptation strategies such as 
efficient shade management, irrigation, and mulching (Moat 
et al., 2017) will favor the cultivation of this type. However, 
under the RCP8.5 scenarios, an annual mean temperature of 
23.5–23.77°C and total precipitation of 1685.67–1806.67 are 
projected to be required for the highest likelihood of C. 
arabica cultivation (67–77%).  From these perspectives, it's 
simple to see how precipitation and temperature rise under 
RCP8.5 are expected to decline coffee farming in the next 
2050s, compared to current climatic conditions. The current 
results are inconsistent with the results of Bunn (2015), who 
established that C. arabica thrives best in tropical regions 
with annual temperatures ranging from 17°C to 23°C and 
rainfall ranging from 800 to 1200 mm but coincide with those 
reported by Moat et al. (2017), who discovered that an 
optimal mean annual temperature of 18 to 21°C and a total 
annual rainfall of 1200–to–1800 mm will be required for C. 
arabica coffee species cultivation in the tropical highland of 
Ethiopia. 

When compared to the current and RCP8.5 climate 
conditions, the likelihood of the distribution of C. arabica will 
rise by 1.2% and 6.8%, respectively, under RCP4.5. However, 
as compared to the present and RCP4.5, the crop distribution 
in RCP8.5 is anticipated to decrease by 5.6% and 6.8%, 
respectively. As precipitation and temperature-related 
factors rise, the ability of C. arabica to cultivate will diminish 
unless mitigation and adaptation measures are applied. 
Based on their findings, Davis et al. (2012) predicted that C. 
arabica would fall by 38% in the most favorable area and 90% 
in the least favorable area in Ethiopia in the 2080s. 

 

5. CONCLUSIONS 
Coffee distribution modeling can give significant insight 

into the expected response of C. arabica to the target climatic 
factors. There is a considerable variation in the C. arabica 
species’ reactions to bio-climatic factors under current and 
future climate change scenarios, resulting in a significant 
fluctuation in the crop’s cultivation. In this study, C. arabica 
has negatively responded to the increase in precipitation in 
the warmest and coldest quarters, which continued to 
significantly reduce the distribution of coffee crops in each 
targeted climate change scenario, but favorably responded to 
annual temperature range ranges (Bio7). In comparison to the 
current situation, crop cultivation in RCP4.5 is expected to be 
much higher, but crop cultivation in RCP8.5 is expected to be 
significantly lower. As a result, the cultivation of C. arabica 
will increase by 1.2% under RCP4.5 but decrease by 5.6% 
under RCP8.5, as precipitation and temperature-related 
variables increase. 

Researchers have used limited models and bioclimatic 
factors to estimate the climate change implications of C. 
arabica using bioclimatic modeling, but a more 
comprehensive analysis is needed to make an accurate 
prediction of future outcomes using different models and 
other environmental factors.  
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