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The water supply for rainfed crops such as bananas in the Aragua State of Venezuela is often 
uncertain, particularly towards the beginning of the rainy season (April-May). Where climatic 
conditions are seasonal, the temporal evolution of the NDVI (Normalized Difference 
Vegetation Index) closely accompanies the interannual variation of vegetation growth in 
response to thermal and hydric factors. The study aims to assess the relationship between 
NDVI, rainfall and potential evapotranspiration during the period of January/2016 to 
December/2017 in a Venezuelan banana plantation. In this study, the NDVI derived from the 
GIMMS MODIS Terra product, the daily accumulated precipitation data (mm) and the daily 
mean air temperature (°C) were used as the only way to estimate the potential 
evapotranspiration. The results showed that the GMOD09Q1-based NDVI reflects reasonably 
well the spatiotemporal variation in biomass accumulation. Besides, this provides 
information on the water stress conditions in banana plants at the plot level. The influence of 
precipitation and potential evapotranspiration on the NDVI was more evident when a lag of 
1 month was considered in terms of the Spearman r, implying that there is a delay in the 
banana phonological response to rainfall changes and dryness conditions.  However, due to 
its low spatial resolution (i.e. 250 m), it is not adequate for the identification of banana wilt 
disease. Therefore, future studies are needed to assess other satellite-derived spectral indices 
for monitoring the health of banana plants over different sites in Venezuela. 

How to Cite: Olivares, B. O., Paredes, F., Rey, J. C., Lobo, D., Galvis-Causil, S. (2021). The relationship between the 
normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela 
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1. Introduction 
The banana (Musa spp.) is a crop extremely important 

with a marked geographic dispersion in Latin America and the 
Caribbean, placing itself as a basic element in food security 
(Olivares et al., 2020). Its production in Venezuela is largely 
done traditionally and represents a key source of income for 
the small producers. The area under banana production in the 
country exceeds 40,000 hectares (Olivares et al., 2021). 
During the last 20 years, banana production has undergone 
slight changes, reaching 424,649 tons with a yield of around 
13.91 tons ha-1 in 2017. This yield is relatively low compared 
with those obtained for other tropical countries (e.g. Brazil: 
14.27 tons ha-1), as a consequence of the shortage of 

agricultural inputs (fertilizers and agrochemicals), problems 
of access to foreign currency to meet domestic demand, and 
the inadequate management of agricultural policies, the 
impact of drought, likewise pests and diseases (Martínez-
Solórzano et al., 2020). 

Due to the large spatial extension of banana plantations in 
the world, there is a huge need to develop low-cost tools to 
monitor biomass production on the soils. In this context, 
remote sensing technologies have captured the interest of 
the global banana industry. Over the last two decades, a 
plethora of satellite-based spectral vegetation indices (VIs) 
have been developed to monitor the health and condition of 

https://jurnal.uns.ac.id/tanah/index
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Figure 1. The geographical location of the study area with banana plots 

 
the crops or vegetation. An example of this is the Normalized 
Difference Vegetation Index (NDVI), which has demonstrated 
its usefulness as a bioindicator of aerial biomass production 
in vegetation (Jedermann et al., 2014; Machovina et al., 2016; 
Ye et al., 2020), also allows estimating the atmospheric 
demand of water in terms of the potential evapotranspiration 
(PE) (Alam et al., 2018; Zhou et al., 2021). Despite these 
important features, the Venezuelan banana sector does not 
usually contemplate the operational use of VIs in its 
management plans. 

In Venezuela, the Aragua State holds the main banana-
producing areas, which are mostly based on rainfed systems. 
Therefore, they are highly dependent on rainfall. In this sense, 
and motivated by the gaps in our understanding of the 
relationships among the NDVI, rainfall, and PE within these 
plantations, the study aims to assess the relationship 
between these variables during the period January/2016 to 
December/2017 (hereinafter, the study period) in a 
Venezuelan banana plantation. 

 

2. Material and Methods 
2.1. Description of the study site 

The study was carried out in a banana plantation located 
in the Aragua State, whose planted area is 205 ha with banana 
Cavendish cv Pineo Gigante (67.58° W, 10.14° N; Figure 1). 
These plants have: i) a leaf number from 16 to 18; ii) height 
values ranging from 3.5 to 4.5 m; and iii) a growth period from 
9 to 10 months in this site. This region is characterized by a 
Tropical Savanna climate (Aw). The annual mean rainfall is 
980 mm (Olivares et al., 2020) and shows a marked seasonal 
pattern with a wet season from May to October. The mean 
annual temperature is 26.2°C, whereas the mean annual 
relative humidity is 70.0% (Olivares, 2018). The terrain relief 
is mostly flat (slope ranging 0-2%). The predominant types of 
soil are Mollisols and Entisols, which are mostly of lacustrine 
origin, with medium textures, high nutrient availability, 
moderate to good drainage, soil pH varying from neutral to 
alkaline, good fertility and high soil organic matter content 
(Olivares et al., 2020). 

2.2. Data set 
2.2.1. Normalized Difference Vegetation Index (NDVI) 

The NDVI is based on the ratio of spectral reflectance 
bands of red and near-infrared bands derived from optical 
satellite sensors, such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor aboard the Terra and 
Aqua satellites (Gillespie et al., 2018; Sharifi, 2020). For this 
study, a set of NDVI images was used to monitor the 
vegetation greenness as a proxy of the biomass production in 
those banana plots located in the study area (see Figure 1). 
Each NDVI image was extracted from the MODIS NDVI 
product (GMOD09Q1) covering the study period of 
January/2016 to December/2017 (i.e. 89 NDVI images). The 
GMOD09Q1 product was developed by the Global Inventory 
Modeling and Mapping Studies (GIMMS) in collaboration with 
the National Aeronautics and Space Administration (NASA) 
and the US Department of Agriculture’s (USDA) (available at 
https://glam1.gsfc.nasa.gov) using a correction algorithm 
based on hierarchical rules for molecular scattering, ozone 
absorption, aerosols, among other quality standards 
(Fensholt & Proud, 2012). The rationale behind the choice of 
this dataset is related to the fact that the GMOD09Q1-based 
NDVI dataset has been used for green biomass assessment in 
a wide variety of banana crops (Johansen et al., 2014; 
Machovina et al., 2016; Oliveira et al., 2019) and its adequate 
spatial and temporal resolution (250 m and 8-day). Further 
details of the GMOD09Q1-based NDVI dataset can be found 
in Heck et al. (2019).  

 

2.2.2. Ground-based observations 
The daily accumulated rainfall (P in mm) and the daily 

average air temperature (T in Celsius degrees) during the 

study period were used. P and T were extracted from a 

conventional climate station located near the banana plots 

shown in Figure 1.  The P and T time-series present no missing 

data and their consistencies were evaluated in terms of data 

quality and homogeneity as explained in (Blesić et al., 2019). 

The potential evapotranspiration (PE) (in mm month-1) was 

estimated using Thornthwaite’s equation (Rahimi et al., 

2019), where T is used as a unique input. 

https://glam1.gsfc.nasa.gov/
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Table 1. Statistical metrics for the NDVI at the plot level during the study period 

Plot 
[#] 

Minimum 
[-] 

Maximum 
[-] 

Mean 
[-] 

SD* 
[-] 

CV** 
[%] 

IBW 
[%] 

1 0.576 0.868 0.750 0.072 9.627 0.064 
2 0.564 0.920 0.756 0.074 9.749 0.080 
9 0.656 0.900 0.774 0.057 7.339 0.149 

11 0.680 0.904 0.800 0.055 6.825 0.248 
12 0.524 0.924 0.786 0.088 11.170 0.066 
18 0.508 0.920 0.778 0.084 10.784 0.115 
19 0.536 0.876 0.796 0.070 8.781 0.101 
21 0.564 0.880 0.754 0.079 10.517 0.241 
23 0.640 0.912 0.792 0.058 7.374 0.168 
25 0.436 0.888 0.726 0.092 12.631 0.147 
27 0.560 0.900 0.727 0.084 11.513 ND 
28 0.636 0.900 0.759 0.069 9.144 0.234 
30 0.436 0.880 0.721 0.108 14.979 0.150 
31 0.532 0.856 0.721 0.075 10.416 0.342 
33 0.528 0.912 0.725 0.094 12.966 0.225 
36 0.576 0.896 0.743 0.081 10.902 0.458 
38 0.484 0.840 0.715 0.095 13.217 0.311 
43 0.296 0.880 0.678 0.132 19.469 ND 
45 0.596 0.868 0.773 0.059 7.684 0.320 
48 0.464 0.836 0.683 0.093 13.572 ND 
49 0.396 0.836 0.684 0.096 14.050 ND 
50 0.472 0.828 0.679 0.089 13.093 ND 

Remarks: * standard deviation; ** coefficient of variation; ND: no data; IBW = Mean incidence of banana wilt (2016-2017) 
   

2.3 Methodology 
To ensure a fair comparison of the NDVI from the 

GMOD09Q1 product with ground-based climate data were 
selected 22 banana plots whose surface average area was 
4.18 ± 1.3 ha (i.e. 1, 2, 9, 11, 12, 18, 19, 21, 23, 25, 27, 28, 30, 
31, 33, 36, 38, 43, 45, 48, 49, and 50 in Figure 1), where there 
was a clear overlap between the banana plot and NDVI pixels. 
Thus, the values of NDVI were extracted from each selected 
banana plot. Then, the 8-day NDVI time series were 
aggregated considering the maximum values of NDVI on a 
monthly time scale to minimize the effect of cloud 
contamination, as in Vásquez and Paredes-Trejo (2020). To 
guarantee temporal coherence, the P and PE time series were 
aggregated on a monthly scale time.   

In order to explore the relationships among the NDVI, P, 
and PE on a monthly scale time, the Spearman rank 
correlation coefficient (Akoglu (2018); hereinafter, Spearman r) 
between the paired values of NDVI against P and PE using a 
lag time of 0, 1, and 2 months during their common periods 
was applied. For example, when P [t-k] versus NDVI [t] where 
k = 1, the values of NDVI at a time moment t are compared 
with the values of P observed at month t-1. The reason behind 
this approach is that there is a delay in the vegetation 
response to the rainfall, as demonstrated in previous studies 
(Vásquez & Paredes-Trejo, 2020). The Spearman rank 
correlation coefficient is adopted due to the predominance of 
a non-Gaussian distribution in these time series (not shown 
here). A moderate incidence of the disease called banana wilt 
(BW) was observed during the study period. BW, caused by a 
fungus-bacteria complex, is a physiological and metabolic 
disorder; whose origin is due to the influence of biotic and 
abiotic factors, such as physical and chemical conditions and 

potentially pathogenic soil microorganisms. This disease is 
mainly characterized by the wilting and yellowing of the older 
leaves (Rey-Brina et al., 2020). For this reason, the effect of 
its incidence (as the percentage of infected plants at the plot 
level; hereinafter, incidence of banana wilt (IBW) was 
considered as an auxiliary variable. 

 

3. Results  
3.1. The temporal variability of NDVI 

Figure 2a shows the variation of the maximum values of 
NDVI monthly for the banana plots during the study period. 
These values ranged from 0.296 to 0.924 with a mean equal 
to 0.741. Furthermore, they tended to be greater than 0.80 
from August to December but tended to be lower than 0.70 
from February to April. On the other hand, the maximum 
NDVI exhibited slightly higher values in 2017 (NDVI mean: 
0.752) than that in 2016 (NDVI mean: 0.728), which was 
related to biomass accumulation in banana plants, as can be 
seen in Figure 2b. For the sake of clarity, Figure 3 shows the 
heatmap of the monthly evolution of the maximum NDVI 
during the study period for the 22 plots of bananas evaluated. 
The fact that these characteristics have been observed in the 
study area, implies the presence of a moderate seasonal and 
interannual variability in the NDVI.    

To explore the variability of NDVI at the plot level, Table 1 
summarizes a few statistical metrics during the study period. 
A low NDVI variability in terms of the coefficient of variation 
(CV) was observed, which is consistent with the weak 
seasonal variability shown in Figure 2a. Another interesting 
feature revealed by NDVI values (Table 1) is that its variability 
does not seem to be related to IBW (Pearson r: 0.014 with p 
> 0.05).  
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Figure 2. For the study period: (a) boxplots of the maximum values of NDVI for all banana plots. For clarity the outliers were 

omitted; (b) the maximum values of NDVI for the 22-banana plots shown in Figure 1.   
 
Therefore, caution should be taken when interpreting this 
result because of the low incidence of banana wilt at the plot 
level (IBW mean: 0.201). Intuitively, one can infer that the 
spectral contribution from banana wilt to total variability in 
NDVI is significantly low compared to that of banana green 
biomass.    

 

3.2. The temporal coupling between NDVI, P and PE 
This section explores the coupling of NDVI-P and NDVI-PE 

during the study period in terms of the Spearman r. 
Regardless of the lag time used in the calculation of the 
Spearman r, a predominance of positive values for NDVI-P 
and negative values for NDVI-PE were observed (Table 2). 
That is, the occurrence of rain events tended to coincide with 
higher values of NDVI, while the prevalence of dry conditions 
reflected by higher PE values tended to be concomitant with 
lower values of NDVI, revealing the important role of P and PE 
on the banana phenology. Furthermore, the influence of P 
and PE on the NDVI was more evident when a lag of 1 month 
was considered in terms of the Spearman r, implying that 
there is a delay in the banana phonological response to 
rainfall changes and dryness conditions.   

 
4. Discussion 

In short, the GMOD09Q1-based NDVI captures reasonably 
well the temporal and spatial variation in biomass 
accumulation (Figure 2b). As expected, the values of NDVI 
showed a seasonal behavior which in turn is largely 
modulated by the rain events (Table 2), which would be 
related to the soil moisture availability. These findings agree 
with previous studies (Johansen et al., 2014; Machovina et al., 

2016). However, the NDVI showed low sensitivity to banana 
wilt disease in terms of variation of NDVI. One would imagine 
that NDVI from infected banana plots will show a low NDVI 
signal at the leaf level, but this characteristic was not 
observed (see Table 1). The reason for this behavior can be 
partially attributed to the low spatial resolution from the 
GMOD09Q1-based NDVI (i.e. 250 m), as recent studies have 
shown (Bouwmeester et al., 2016; Clark & McKechnie, 2020; 
Ye et al., 2020). Another factor that could explain the low 
sensitivity of the NDVI is the fact that the infected banana 
plants are quickly cut down due to that it is the best way to 
avoid the dissemination of this disease (Ye et al., 2020), 
implying a low chance of detection through the maximum 
monthly NDVI. The above-mentioned findings indicate that 
this approach should be integrated to in situ additional 
measurements or complemented with other high-resolution 
spectral indices for disease monitoring such as the banana 
wilt.  

The results of this study indicated also that the 
GMOD09Q1-based NDVI provides a moderately accurate 
picture of the impacts of rainfall and environmental dryness 
variability on banana plots (Table 2). This is attributed to the 
fact that as the drought (wet) conditions progress, the leaf 
chlorophyll content decreases (increases) significantly 
(Bouwmeester et al., 2016), which, in turn, leads to lower 
(higher) NDVI over the entire banana plantation. Despite its 
limitations in terms of early banana wilt detection, the 
GMOD09Q1-based NDVI has potential as a low-cost 
operational tool for vegetation stress monitoring triggered by 
climate conditions across extensive banana plantations in 
Venezuela, and in this way make a better irrigation 
scheduling.  



Olivares et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 18(1), 2021 

62 

Table 2. Spearman rank correlation coefficients for the NDVI against the P, PE, and IBW with lag = 0, 1 and 2 months during the 
study period  

Lag [month] 0 1 2 

Plot 
[#] 

NP1 
[-] 

NP2 
 [-] 

NP1 
[-] 

NP2 
 [-] 

NP1 
[-] 

NP2 
 [-] 

1 0.344 -0.276 0.423 -0.559 0.461 -0.244 
2 0.307 -0.349 0.384 -0.749 0.645 -0.299 
9 0.234 -0.504 0.447 -0.517 0.334 -0.323 

11 0.412 -0.631 0.686 -0.521 0.333 -0.319 
12 0.258 -0.514 0.661 -0.434 0.535 -0.329 
18 0.038 -0.127 0.332 -0.224 0.375 -0.330 
19 0.474 -0.538 0.647 -0.623 0.370 -0.098 
21 0.213 -0.34 0.461 -0.241 -0.266 -0.141 
23 0.269 -0.589 0.497 -0.329 0.089 -0.242 
25 0.082 -0.233 0.208 -0.489 0.152 -0.097 
27 0.186 -0.483 0.310 -0.475 0.343 -0.216 
28 0.281 -0.407 0.286 -0.433 0.278 -0.234 
30 0.211 -0.187 0.165 -0.295 0.326 -0.057 
31 0.066 -0.092 0.118 -0.313 0.031 0.152 
33 0.453 -0.434 0.515 -0.382 0.140 -0.002 
36 0.353 -0.329 0.264 -0.367 0.195 -0.027 
38 0.314 -0.495 0.453 -0.276 0.236 -0.423 
43 0.296 -0.284 0.323 -0.293 0.259 -0.060 
45 0.308 -0.214 0.227 -0.393 0.214 -0.222 
48 -0.06 -0.219 0.253 -0.392 0.317 -0.493 
49 0.331 -0.484 0.279 -0.263 0.239 -0.136 
50 0.207 -0.276 0.177 -0.307 0.022 -0.032 

Remarks: NP1 is NDVI vs rainfall (P); NP2 is NDVI vs the potential evapotranspiration (PE) 
 

The results of the NDVI calculation in our studies vary from 
0.296 to 0.924. The zero values in May correspond to missing 
data during 2016 (see Figure 3). In general, crops or plants will 
always have positive values between 0.2 and 1 in the tropical 
conditions of Venezuela (Olivares & López-Beltrán, 2019). The 
healthy and dense banana canopy is located above 0.6 

according to Johansen et al. (2014) and the scattered 
vegetation have NDVI values between 0.2 to 0.5 in some 
banana plots (48, 49, 50) especially in the dry season in the 
area (January-April). In our case, the NDVI was a simple 
indicator of photosynthetically active biomass or, in simple 
terms, an estimate of the health of the vegetation.  

 

 
Figure 3. Heatmap of the evolution of the monthly NDVI during the study period for the 22 lots of bananas evaluated. 
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The NDVI allowed to differentiate the vegetation from 
other types of ground cover in the site of interest and to 
determine its general state. It also allowed to define and 
visualize areas with vegetation on the map, as well as to 
detect abnormal changes in the growth process of bananas. 
To estimate the beginning and end of the annual growth 
period, (Berger et al., 2019) and (Teixeira et al., 2021) 
resorted to a simplified hydrological balance model, through 
which they obtained significant correlations between the 
humidity index and the NDVI, with a delay in the NDVI signal 
of 5 weeks during the initial annual growth stage and 6 weeks 
during the decline stage. 

According to Verrelst et al. (2015), the use of multispectral 
images, favor the effective localization of areas that present 
stress levels in the crop, before it is visibly manifested, which 
benefits a selective intervention to specific areas, generating 
more efficient management. On the other hand, the study by 
Dannenberg et al. (2020), establishes that the areas that 
manifest stress in bananas are appreciable although the 
processing was carried out from Landsat images that have a 
pixel size of 30x30 m, at a level of precision, better results 
would be achieved if the processing was carried out with 
images of drones that have a higher resolution. 

Because of its relationship with different agroclimatic 
elements shown here, Jiang et al. (2017) establishes that the 
NDVI could be used as an indicator of the beginning of the 
rain cycle, thus taking advantage of the advantage of having 
information with complete spatial coverage, as opposed to 
the strictly local nature of meteorological observation. Before 
establishing an objective procedure that serves this purpose, 
it is necessary to investigate, in the state of Aragua, the 
characteristics of the relationship between different climatic 
indicators and the NDVI. In this sense, the use of indicators 
derived from a hydrological balance procedure, eventually 
integrated with variables that express the thermal aptitude of 
the region, can be considered a methodological alternative 
with greater intrinsic capacity to explain plant growth and 
biomass production. 

 

5. Conclusion 
This study used NDVI time series derived from the MODIS 

NDVI product (GMOD09Q1) to assess the relationships 
among the NDVI, rainfall, and PE in a Venezuelan banana 
plantation. The results showed that the GMOD09Q1-based 
NDVI reflects reasonably well the spatiotemporal variation in 
biomass accumulation. Besides, this provides information on 
the water stress conditions in banana plants at the plot level. 
However, due to its low spatial resolution (i.e. 250 m), it is not 
adequate for the identification of banana wilt disease. 
Therefore, future studies are needed to assess other satellite-
derived spectral indices with a higher spatial resolution for 
monitoring the health of banana plants over different sites in 
Venezuela.  Knowing the relationship between rainfall and 
the productivity of banana crops in the central region of 
Venezuela would allow better planning of cultivation work 
and adaptation strategies to different environmental 
conditions. Additionally, it is possible to carry out this type of 
analysis for other banana areas with free satellite 
information. 
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