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Indirect estimate of solute-transport parameters through pedo-transfer functions (PTFs) is 
becoming important due to expensive and time-consuming direct measurement of the 
parameters for a large number of soils and solutes. This study evaluated the relative 
performance of PTFs of multiple linear regression (MLR) and Artificial Neural Network 
(ANN) models in predicting velocity (V), dispersion coefficient (D) and retardation factor 
(R) of CaCl2, NaAsO2, Cd(NO3)2, Pb(NO3)2 and C9H9N3O2 (carbendazim) in five agricultural 
soils. V, D and R of the solutes were determined in repacked soil columns under steady-
state unsaturated water flow conditions. Textural class, particle size distribution, bulk 
density, organic carbon, relative pH, clay%, grain size, and uniformity coefficient of the soils 
were determined. MLR and ANN models were calibrated with the measured data of four 
soils and verified for another soil. Root-Mean Square Error (RMSE) is significantly smaller 
(0.015) and modelling efficiency (EF) is significantly larger (0.999) for ANN model than 
those (0.096 and 0.954, respectively) for MLR model. Negative Mean Absolute Error (MAE) 

(0.0002) of MLR model indicates overestimation, while positive MAE (0.00003) of ANN 
model indicates minimal underestimation. The ANN model is less biased than the MLR 
model during prediction. Thus, the ANN model can significantly enhance pollution 
transport prediction through soils with good accuracy. 

How to Cite: Mojid, M. A., Hossain, A. B. M. Z. (2021). Comparative performance of multiple linear regression and 
artificial neural network models in estimating solute-transport parameters [Research]. Sains Tanah Journal of Soil 
Science and Agroclimatology, 18(1): 27-35. https://dx.doi.org/10.20961/stjssa.v18i1.49207  

 

1. Introduction 
Continuous application of various agrochemicals and 

addition of industrial wastes pollute soils with heavy metals 
and pesticide residues. The polluted soils afterwards 
contribute to polluting groundwater through leaching. 
Therefore, characterizing the transport of soluble chemicals 
through soils is an essential part to assess the pollution of soil 
and groundwater resources (Amin Al Manmi et al., 2019; 
Chegenizadeh et al., 2014). Water flow and solute transport 
through the subsurface are normally simulated by 
mathematical models (Zhang et al., 2012), which require soil 
hydraulic parameters and solute-transport parameters as the 
major input data. The direct method of determining the 
solute-transport parameters includes measurement of solute 
breakthrough curves (BTCs) and fitting them to analytical 
solutions of the classical convection-dispersion equation. This 
method is time-consuming, laborious, expensive and 

practically impossible for a wide range of soil types and 
solutes to sample the temporal and spatial variations. 
Consequently, indirect approaches like pedo-transfer 
functions (PTFs) are getting importance as alternative 
techniques. The PTFs utilize easily measurable basic soil 
properties in predicting solute-transport parameters and also 
other soil hydraulic properties (Achat et al., 2016; Van Looy et 
al., 2017; Xu et al., 2021). Considering multifaceted 
limitations of direct measurements, fairly correct estimates of 
the solute-transport parameters can serve well for many 
practical applications. 

The good potential has been reported in predicting flow 

velocity (V), dispersion coefficient (D) and dispersivity () of 
solutes using PTFs from multiple linear regressions (MLR) 
(Alibuyog, 2007; Mojid, Hossain, Wyseure et al., 2019). In 

predicting V, D and  using step-wise multiple regressions for 
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a large number of soil textures, Perfect et al. (2002) explained 
more than 50% of the total variation in dispersivity in terms 
of parameters of the water retention curve. Artificial neural 
networks (ANNs), another class of PTFs, are now well-known 
techniques in many disciplines, such as engineering, 
medicine, biology, physics, etc. In contrast to MLR, ANNs are 
non-linear regression techniques and have the ability of 
mapping between input and output patterns. They have been 
applied for predicting soil hydraulic properties in many 
studies (e.g., Minasny et al., 2004; Schaap et al., 1998; Sihag, 
2018; Sihag et al., 2019; Williams & Ojuri, 2021). In few 
occasions, ANN was also applied to predict the transport and 
distribution of solutes in groundwater (Almasri & 
Kaluarachchi, 2005; Morshed & Kaluarachchi, 1998). 
Recently, MLR and ANN models have been applied to predict 
transport parameters of heavy metal compounds and 
pesticides in agricultural soils (Mojid, Hossain, & Ashraf, 2019; 
Mojid, Hossain, Wyseure et al., 2019). 

Due to entirely different working principles of MLR and 

ANN models, the PTFs based on these models also provide 

different predictions. The accuracy and reliability of the two 

sets of PTFs have been compared for various predicting 

purposes. For example, higher accuracy of the ANN model 

was reported in predicting field capacity and permanent 

wilting point of soils in terms of coefficient of determination 

(r2), Mean Absolute Error (MAE), and Root-Mean Square Error 

(RMSE) (Taşan & Demir, 2020); monthly maximum rainfall in 

terms of r2 (Ilaboya, 2019); water quality parameters in terms 

of r2 and RMSE (Zare Abyaneh, 2014); changes in overall 

quality of cheese during storage in terms of r2 and RMSE 

(Stangierski et al., 2019), and bonding strength of wood in 

terms of r2 and MAE (Bardak et al., 2016). However, the 

literature search reveals no comparison of the MLR and ANN 

models for predicting solute-transport parameters, 

specifically reactive solutes, through agricultural soils. It is 

therefore important to identify the relative performance of 

the two sets of PTFs to choose the better one for practical 

applications. The objective of this study was therefore to 

evaluate and compare performances of the MLR and ANN 

models in predicting solute-transport parameters, specifically 

for reactive solutes. 

 

2. Material and Methods 

This study utilized a part of comprehensive data sets 

measured by the authors to achieve the goal. A detailed 

description of the experiments and measurement of data sets 

are reported in Mojid et al. (2016). They are shortly described 

in the following sections. However, the readers seeking more 

details are referred to the cited source. 

 

Table 1. Textural class, bulk density (γ, g cm3), organic carbon (OC%), relative pH (pH), clay (fraction), median grain diameter 
(D50, mm) and uniformity coefficient (Cu) of six soils used in calibrating and verifying MLR and ANN models 

Sl. 
No. 

Soil texture γ 

(g cm3) 

OC 
% 

pH′ Clay 
(fraction) 

D50 (mm) Cu 

1 Silty clay loam 1.41 0.554 1.09 0.272 0.037 2.43 
2 Silt loam 1.26 0.987 0.96 0.232 0.045 2.61 
3 Sandy loam 1.54 0.288 1.14 0.156 0.073 2.99 
4 Sandy loam 1.61 0.245 1.16 0.095 0.134 3.35 
5 Loamy sand 1.63 0.134 1.20 0.049 0.299 3.64 
6 Silt loam 1.33 0.760 0.97 0.170 0.070 2.85 
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Figure 1. Structure of Artificial Neural Network (ANN) model for predicting solute-transport parameters from soil properties 

(Source: Mojid, Hossain & Ashraf (2019)) 
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2.1. Measurement of solute transport 

Six agricultural soils were sampled from the upper 0–15 cm 
soil layers from geographically distributed locations of 
Bangladesh. Particle fractions, grain size distribution, pH and 
organic carbon (OC) were determined following standard 
methods from sub-samples of the air-dried and sieved samples. 
Four soil columns were prepared for solute-transport 
experiment in 34-cm PVC columns that were sited separately 
on 1.2-m high soil columns. Two TDR sensors: one at 8 cm and 
the other at 28 cm below soil surface were inserted horizontally 
in each upper soil column (experimental soil column). This set-
up was conditioned by leaching tap water following wetting-
drying cycles during several months. After conditioning, steady-

state water flow (0.32  0.02 cm h-1) condition through the soil 
columns was achieved with a cartridge pump and a 5-ml 
solution of CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and C9H9N3O2 
(carbendazim) was spread separately on each upper soil 
column evenly. Soil-water content and bulk electrical 
conductivity (EC) of the soils were recorded with a TDR100 and 
CR10X datalogger at suitable interval for each soil. Data 
recording continued until the applied CaCl2 washed out of the 
upper soil columns completely with leaching water flux. Similar 
measurements were done consecutively for the six soils. After 
measurements of solute breakthrough data, soil samples were 
collected from each upper column and their physical and 
hydraulic properties were determined following standard 
methods. Soil pH, EC and OC were determined from another 
sample collected from each upper soil column. 

Breakthrough curves, BTCs (normalized solute 

concentration versus solute breakthrough time), of the 

solutes were calculated from the measured time series of 

TDR-measured EC. The mean travel time (), mass-dispersion 

number (N = D/ZV) and retardation factor, R, of the solutes 

were determined by analyzing the BTCs by a transfer-function 

method (Mojid et al., 2004). By using , N and Z (distance 

between the input and response BTCs) the transport velocity, 

V (= Z/), and dispersion coefficient, D (= VZN = Z2N/), of the 

solutes were calculated. V and R for reactive solutes being 

concentration-dependent are time-dependent. Note that 

CaCl2 is a non-reactive solute and hence its retardation factor 

is typically assumed as unity. 

 

2.2. Measurement of soil properties 

Soil textural classes, pH and OC were determined by 

Hydrometer method (Black, 1965), glass electrode pH meter 

(Jackson, 1962) and Walkley-Black method (Jackson, 1962), 

respectively following standard protocols. Grain size 

distribution was determined with sieve analysis following 

British Standards, BS 1377 (1990), and median grain diameter 

(D50) and uniformity coefficient (Cu) of the soils were 

calculated there from. The bulk density of the soils was 

measured by drying soil samples in core samplers in an oven 

at 105oC for 24 h. The textural class, bulk density, organic 

carbon, relative pH (ratio of observed soil pH to the pH of a 

neutral soil (7) and denoted by pH′), clay content, median 

grain diameter and coefficient of uniformity of the soils are 

listed in Table 1. 

 

2.3. MLR and ANN models 
The general form of multiple linear regression, MLR, 

models for predicting solute-transport parameters can be 

expressed by Equation 1. 

kk XbXbXbXbY  221100   
 .................. [1] 

with Y being mean of the response/dependent variables (Y), 

X  mean of predictors (independent variables) (X) and bs the 

regression coefficients. 

A four-layer ANN model for the solutes under 

investigation (Figure 1) was developed by Mojid, Hossain & 

Ashraf (2019). With input variables I1, …, In (i = 1, …, n) and 

hidden units Hj, …, Hk (j = 1,…, k), the total weighted input (Xj) 

is expressed by the sum of products of inputs and weights (wij) 

of the connections between the input and hidden units as 

Equation 2. 
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 .............................................................. [2] 

By using Xj a transfer function gives activity level of the hidden 

unit that is given by Equation 3. 

  jXj
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 ............................................................. [3] 

The hidden layer’s activity and weight are multiplied together 

to generate output (prediction) of the neural network, Pv, as 

Equation 4. 

  jv
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 ............................................................ [4] 

The observed output (Ov) and predicted output, Pv, are 

compared using root-mean-square error (RMSE) as Equation 5. 
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RMSE  ...................................... [5] 

To minimize deviation between the observed and predicted 

outputs, the weights, wij, are adjusted in the calculation 

system by using a learning function given by Equation 6. 

  
   twotw ijijij  1  ..................................... [6] 

with Δwij (t+1) being magnitude of weight-change, ε learning 

rate, δj a local error gradient, α a momentum coefficient, oi 

output of the previous unit, and wij(t) current weight. 

Following Haykin (1994), Mojid, Hossain & Ashraf (2019) 0.1 

was adopted for learning rate and 0.3 for momentum 

coefficient. The error gradient for output units is expressed 

by Equation 7. 

  
  vvjj POH  1  ................................................ [7] 

and for hidden units, it is expressed by Equation 8. 

  
    jvvvjj wPOH   1  ................................... [8] 

with σ1(Hj) being the derivative of the network's hidden layer 

activity. ANN model becomes appropriate when RMSE 
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reaches its least value that is obtained by continuously re-

calculating RMSE after each adjustment of the weight. 

 

2.4. Model calibration and verification 
The MLR models (Eq.1) were calibrated by fitting them to 

the measured solute-transport parameters of five soils (#1 to 
5, Table 1). Attainment of least errors between the measured 
and estimated solute-transport parameters provided desired 
values of the regression coefficients, bs (Eq.1). Similarly, the 
ANN model was calibrated with the same set of observed data 
of the five soils and the weights (wij, Eq.2) were determined. 
Both models were verified by using the data set of soil #6 
(Table 1) to evaluate the accuracy levels of their predictive 
capability.  

 

2.5. Model performance indices 
Any model encounters a number of errors while making 

predictions, the most important of which are expressed in 
terms of RMSE, modelling efficiency (EF), Mean Absolute 
Error (MAE), Bias Error (BE) and Mean Square Error (MSE). 
Consequently, the performances of our MLR and ANN models 
were assessed in terms of these performance indices 
following Piegorsch & Bailer (2005), Sarmah et al. (2005), and 
Phillips (2006). RMSE is expressed by Equation 9. 
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where Pv is predicted and Ov is measured/observed solute-
transport parameters, and n is observation number. The 
lesser an RMSE the superior is the performance of the model; 
for perfect matching of the measured and predicted values, 
RMSE becomes 0 (zero). EF indicates overall agreement 
between the observed and predicted outputs and calculated 
by Equation 10. 
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where Om is the average of observed outputs, and Ov and Pv 
are observed output and predicted output, respectively 
(Eq.5). EF must be positive for a good model; for identical 
values of the observed and predicted outputs, EF becomes 
unity. Negative EF infers a prediction level that is worse than 
simply adopting the observed mean as the best estimate of 
output. MAE measures the size and identifies sign of bias 
error in prediction, thus quantifying the magnitude of over-or 
under-estimation of measurements. MAE is expressed by 
Equation 11.  

  
  nPOMAE

n

v

vv /
1




  .......................................... [11] 

Bias is a persistent positive or negative deviation of predicted 
value from actual value. BE is usually calculated as a 
percentage of overall error and expressed by Equation 12 
(Geman et al., 1992). 

  
100

2


MSE

ME
BE  ................................................... [12] 

with MSE being the average squared difference between the 
predicted and actual outputs and calculated by Equation 13. 

  
 2RMSEMSE  ...................................................... [13] 

 

3. Results  
3.1. Model performance in predicting solute-transport 

velocity 
Predicted velocity, V, of the five solutes under investigation 

(CaCl2, NaAsO2, Cd(NO3)2, Pb(NO3)2 and C9H9N3O2) agrees 

fairly well with the measured velocity both for MLR and ANN 

models (Figure 2).  

 
Table 2. Comparison of root–mean square error (RMSE), modelling efficiency (EF), mean absolute error (MAE) and bias 

components of error (BE) of the MLR and ANN models 

Solutes Variables 
MLR Model ANN Model 

RMSE EF MAE BOE (%) RMSE EF MAE BE (%) 

CaCl2 
  

V 0.110 0.990 -0.0060 0.300 0.013 0.999 -0.00002 0.0001 
D 0.046 0.999 0.0000 0.000 0.058 0.999 0.00010 0.0003 

NaAsO2 
  
  

V 0.091 0.993 0.0027 0.087 0.018 0.999 -0.00003 0.0003 
D 0.373 0.927 -0.0041 0.012 0.030 0.999 0.00050 0.0281 
R 0.004 0.992 0.0035 74.409 0.000 0.999 0.00000 0.0001 

Pb(NO3)2 
  
  

V 0.126 0.987 0.0029 0.051 0.015 0.999 0.00001 0.0000 
D 0.213 0.963 0.0124 0.338 0.030 0.999 -0.00002 0.0000 
R 0.007 0.965 -0.0051 54.816 0.003 0.995 0.00000 0.0000 

Cd(NO3)2 
  
  

V 0.114 0.990 -0.0065 0.326 0.007 0.999 -0.00004 0.0028 
D 0.169 0.939 0.0090 0.283 0.011 0.999 0.00001 0.0000 
R 0.006 0.987 0.0042 51.402 0.003 0.998 -0.00001 0.0030 

Carben- 
dazim 
  

V 0.084 0.994 -0.0084 0.997 0.010 0.999 -0.00001 0.0001 
D 0.074 0.983 -0.0021 0.082 0.021 0.999 0.00000 0.0000 
R 0.003 0.997 -0.0023 59.597 0.002 0.998 0.00000 0.0000 

Average 0.096 0.954 -0.0002 16.395 0.015 0.999 0.00003 0.0024 
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Figure 2. Predicted velocities of CaCl2 (a), NaAsO2 (b), Pb(NO3)2 (c), Cd(NO3)2 (d) and C9H9N3O2 (carbendazim) (e) by MLR and 
ANN models versus their measured velocities 

 
The coefficient of determination (r2) between the 

measured and predicted velocities of 0.990 to 0.998 for MLR 
model and ≥0.99 for ANN model for the solutes demonstrates 
almost 1:1 relation of the solute velocities for both models. 
Root-mean-square error, RMSE (Eq.9), in the prediction 
ranges between 0.084 and 0.126 for MLR model and between 
0.007 and 0.018 for ANN model (Table 2). Although RMSEs of 
both models are small in terms of accuracy of prediction, ANN 
model provides significantly smaller RMSE than MLR model. 
Both models predict velocity of the solutes with high 
efficiency, EF, ranging from 98.7% to 99.4% for MLR model 
and 99.9% for ANN model. So, overall agreement between 
the measured and predicted velocities is almost perfect, with 
only minimal deviation for MLR model. The mean absolute 
error, MAE, of estimate by MLR model varies from –0.0084 to 
0.0029, with negative error for CaCl2, Cd(NO3)2 and C9H9N3O2 

and positive error for NaAsO2 and Pb(NO3)2. Negative MAE 
indicates that the model overestimates solute-transport 
velocity during verification, while positive MAE reveals 
underestimation of velocity as visualized in Figure 2. The 
observed errors in both directions (over-or under-
estimations) are however very small to affect prediction by 
the models. The bias component of overall error, BE, is also 
small, which ranges between 0.051% and 0.997% for MLR 
model. The mean absolute error of ANN model is negative (–
0.00004 to –0.00001) for CaCl2, NaAsO2, Cd(NO3)2 and 
C9H9N3O2 (Table 2), implying that the model slightly over-
predicted transport velocity of these solutes. The positive 
MAE (0.00001) for Pb(NO3)2 indicates a tendency for marginal 
underestimation. The bias error of prediction of solute 
velocity by ANN model ranges between 0 and 0.0028% for the 
five solutes. 

  

  

 

 

 

(a) (b) 

(c) (d) 

(e) 
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Figure 3. Predicted dispersion coefficients of CaCl2 (a), NaAsO2 (b), Pb(NO3)2 (c), Cd(NO3)2 (d) and C9H9N3O2 (carbendazim), and 

(e) by MLR and ANN models versus their observed dispersion coefficients 
 

3.2. Model performance in predicting solute 
dispersion coefficient 

Figure 3 demonstrates the level of agreement between 
the measured and predicted dispersion coefficients, D, for the 
five solutes. The coefficient of determination is between 0.93 
and 0.98 for NaAsO2, Cd(NO3)2, Pb(NO3)2 and C9H9N3O2, and 
0.99 for CaCl2 for MLR model and ≥0.99 for ANN model. These 
results imply that although MLR model can capture the 
variation in dispersion coefficient of non-reactive solute, it 
cannot adequately capture the variation for reactive solutes. 
ANN model perfectly captures the variation. RMSE varies 
between 0.213 and 0.373 for MLR model and between 0.011 
and 0.058 for ANN model, with significantly larger error for 
MLR model. The efficiency of the modelling dispersion 
coefficient is 0.927 to 0.983 for the reactive solutes and 0.999 

for non-reactive CaCl2 with MLR model. EF of ANN model is 
0.99. MLR model results in positive mean absolute error, MAE 
(0.000 to 0.0124), for CaCl2, Pb(NO3)2, Cd(NO3)2 and Cd(NO3)2 

but negative MAE (0.0041 to 0.0021) for the other solutes. 
These MAEs reveal that MLR models underestimate 
dispersion coefficient for CaCl2, Pb(NO3)2 and Cd(NO3)2 but 
overestimate it for the other solutes. ANN model results in 
small (0 to 0.0005) negative mean absolute errors except for 
Pb(NO3)2, thus revealing an affinity of the model to 
underestimate dispersion coefficient for Pb(NO3)2 and 
overestimate it for the other solutes. The bias error, BE, varies 
from 0 to 0.338% for MLR model and 0 to 0.0281 for ANN 
model among the five solutes. Small bias errors imply that 
both models are free from bias or only minimally biased in 
predicting solute-dispersion coefficient, with ANN model 
being almost no bias in the prediction. 

  

  

 

 

 

(a) (b) 

(c) (d) 

(e) 
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3.3. Model performance in predicting solute 
retardation factor 

Coefficient of determination between the measured and 
predicted retardation factors, R, of the reactive solutes varies 
from 0.984 to 0.999 for MLR model and 0.975 to 0.987 for 
ANN model. The level of agreement between retardation 
factors predicted by the two models is illustrated in Figure 4. 
The input parameters exert a less consistent impact on ANN 
model in determining the retardation factor compared to the 
other solute-transport parameters. RMSEs of 0.003 to 0.019 
for MLR model and 0.0004 to 0.0029 for ANN model, both 
ranges being small, reveal good matching between the 
measured and predicted retardation factors of the solutes. 
Modeling efficiency, EF, of MLR model in predicting 
retardation factor of NaAsO2, Pb(NO3)2, Cd(NO3)2 and 
C9H9N3O2 is 0.992, 0.965, 0.987 and 0.997, respectively. The 
modelling efficiency of ANN model in predicting retardation 
factor of these solutes is ≥0.98. In predicting the retardation 
factor with MLR model, the mean absolute error, MAE, of 
0.0035 for NaAsO2 and 0.0042 for Cd(NO3)2 imply a small 
degree of underestimation. For the other solutes, the mean 

absolute errors varying from 0.0023 to 0.0051 indicate a 
small degree of overestimation in the prediction. For ANN 
model, the mean absolute error of the solutes is 0 (zero) 
except for Cd(NO3)2 for which the mean absolute error is –
0.00001. Bias component of error, BE, is large, ranging from 
3.23% to 74.41%, for MLR. BE with ANN model being small, 0 
to 0.003%, reveals no or negligible bias in the prediction of 
retardation factor by this model. 

4. Discussion 
During building of the MLR model for different solutes 

(CaCl2, NaAsO2, Cd(NO3)2, Pb(NO3)2 and C9H9N3O2) the input 

variables that exerted an insignificant impact on outputs were 
discarded to improve the efficiency of the model. This 
selection criteria of input variables avoided major over-

parameterization of the model during calibration. In contrast, 
ANN model utilized all input variables for its construction and 
consequently permitted a certain degree of flexibility in terms 

of input variables. For constructing this model, functional 
relationships between input and output need to be known a 
priori from enough training examples. 

In vast majority of cases, ANN model provides larger 
values of coefficient of determination compared to MLR 
model in the prediction of solute-transport parameters. 

These results are similar to that of Bardak et al. (2016), 
Stangierski et al. (2019), and Taşan & Demir (2020) who also 
obtained a larger coefficient of determination with ANN 

model than with MLR model. So, ANN model is more accurate 
in capturing variation in solute-transport parameters than 
MLR model. Various performance indices of the MLR and ANN 

models in predicting velocity, dispersion coefficient and 
retardation factor of CaCl2, NaAsO2, Cd(NO3)2, Pb(NO3)2 and 
C9H9N3O2 are compared in Table 2. The average RMSE in 

predicting velocity, dispersion coefficient and retardation 
factor of the solutes is 0.105, 0.175 and 0.008, respectively, 
with MLR model and 0.012, 0.030 and 0.002, respectively 

with ANN model.  

 

 

Figure 4. Predicted retardation factors of NaAsO2 (a), Pb(NO3)2 (b), Cd(NO3)2 (c) and C9H9N3O2 (carbendazim, d) by MLR and 
ANN models versus their retardation factors. 
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When compared, the overall average RMSE is much larger 
(0.096) for MLR model compared to ANN model (0.015). 
Higher prediction accuracy of ANN model than MLR model in 
terms of RMSE has been also reported by Stangierski et al. 
(2019) and Taşan & Demir (2020) for application of these 
models in product (cheese) quality and soil hydraulic property 
prediction, respectively. Thus, our results reveal that ANN 
technique produces more accurate model than MLR method 
for predicting solute-transport parameters. Overall efficiency 
of modelling for MLR model (0.954) is much lower than that 
for ANN model (0.999). So, in terms of modelling efficiency, 
ANN technique also provides more accurate models than MLR 
method. Based on the mean absolute error, MAE, MLR model 

with average MAE of 0.0002 overestimates solute-transport 
parameters, while ANN model with an average MAE of 
0.00003 underestimates them slightly. When MAE expressed 
as a percentage of corresponding RMSE, the average bias 
component of error accounts for 16.40% of overall error in 
case of MLR model, whilst this error accounts for 0.0024% 
only in case of ANN model. Smaller MAE by ANN model than 
MLR model was also obtained by Bardak et al. (2016) and 
Taşan & Demir (2020). So, ANN model is not bias in predicting 
solute-transport parameters but MLR model is significantly 
bias for this prediction. MLR method however retains the 
advantage of the physical interpretation of the solute-
transport parameters, while ANN technique does not retain 
this property. ANN model is capable of capturing non-linearity 
in data. Hence, improved prediction of solute-transport 
parameters by ANN model is more likely compared to MLR 
model. This inference is fully in agreement with Zare Abyaneh 
(2014), who obtained better performance of ANN model 
compared to MLR model while predicting water quality 
parameters by both models.   
 

5. Conclusion 
Multiple linear regression, MLR, models, utilizing selective 

inputs, although avoid over-parameterization they 
considerably overestimates solute-transport parameters. 
ANN model permits flexibility in selecting input variables but 
it slightly underestimates the parameters. ANN technique 
provides more accurate models with improved root-mean 
square error, RMSE, and modelling efficiency, EF, compared 
to MLR models. ANN model is less biased than MLR model in 
predicting solute-transport parameters. Thus, ANN model can 
significantly enhance the prediction of pollution transport 
through soils by providing essential input parameters. 
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