
SAINS TANAH – Journal of Soil Science and Agroclimatology, 18(1), 2021, 15-26 

STJSSA, p-ISSN 1412-3606 e-ISSN 2356-1424 http://dx.doi.org/10.20961/stjssa.v18i1.45417   

 

 

SAINS TANAH – Journal of Soil Science and Agroclimatology 
 

Journal homepage: http://jurnal.uns.ac.id/tanah    

 
Distribution of nickel (Ni) in peatland situated alongside mineral soil derived from 
ultrabasic rocks 
 
Heru Bagus Pulunggono1*, Moh Zulfajrin2, Fuadi Irsan3  
 
1 Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University,  Indonesia 
2 Graduated Program of Soil Science and Land Resources Department, Faculty of Agriculture, IPB University, Indonesia 
3 Indonesian Agency for Agricultural Research and Development (BPTP) South Sumatera, Ministry of Agriculture, Palembang, 

Indonesia  
 

 

ARTICLE INFO ABSTRACT 

Keywords:  
Nickel characteristics 
Peat 
Ultrabasic mineral soil 
Morowali 
 
Article history 
Submitted: 2020-11-05 
Accepted: 2021-06-05 
Available online: 2021-06-30 
Published regularly: June 2021 
 
* Corresponding Author  
Email address: 
heruipb@yahoo.co.id  
 
 

Detailed studies of Ni distribution in peat that is influenced by Ni-rich soil derived from 
ultrabasic rocks are still limited. The objective of this study was to reveal the characteristics 
of Ni in peat from Morowali (Central Sulawesi Province, Indonesia) at several depths and 
distances from the boundary of the ultrabasic mineral soil. Peat was sampled from depths 
of 0–30, 30–60, and 60–90 cm at distances of 100, 200, 300, 400, 500, and 600 m from the 
border of the ultrabasic mineral soil in March 2018. Ni characteristics were examined 
through their total, exchangeable, water-soluble, and adsorbed distributions. The 
relationships between Ni and some peat chemical properties such as pH; cation exchange 
capacity; macronutrient contents of K, Ca, and Mg; and micronutrient contents of Fe, Cu 
and Zn were also observed. The high Ni content in peat at the study transect is caused by 
an accumulation of Ni transported from elevated areas of mineral soil. Most Ni in peat is 
bonded to the soil organic exchange complexes. Accumulation of the mineral soil fraction 
in the peat surface is indicated at distances of 100–400 meters from the ultrabasic mineral 
soil. Ni distribution in peat at the study transect is mainly governed by a combination of Fe, 
pH, organic material, water content, peat depth, and distance from ultrabasic mineral soil. 

How to Cite: Pulunggono, H. B., Zulfajrin, M., & Irsan, F. (2021). Distribution of nickel (Ni) in peatland situated alongside 

mineral soil derived from ultrabasic rocks. Sains Tanah Journal of Soil Science and Agroclimatology, 18(1) : 15-26. 
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1. Introduction 
There are numerous studies of nutrient distributions in 

tropical peat (Pulunggono et al., 2019; Watanabe et al., 2013). 
However, almost all of these studies focused on the chemical 
properties of peat overlying mineral soil that is derived from 
fluviatile sediments of felsic–andesitic rock areas. Fu et al. 
(2014) and Ritung et al. (2019) reported that the peat in 
Morowali, Central Sulawesi, developed in a backswamp area 
consisting of an ultrabasic formation. Weathering from this 
type of rock formed a laterite soil containing high amounts of 
Ni (Tupaz et al., 2020; Zhang et al., 2020). This soil has long 
been cultivated by local farmers for cash crops and oil palm 
plantation companies. 

Despite its status as an essential nutrient for the growth 
and development of several higher plants (Siqueira Freitas et 
al., 2018), elevated Ni concentration in soil adversely affects 

plants (Jiang et al., 2019), animals, and humans (Das et al., 
2019; Genchi et al., 2020). Accumulation of Ni in plant tissue 
is detrimental to agricultural product quality, leading to the 
disruption of chemical and biological activities in the human 
body (Olafisoye et al., 2020; Sreekanth et al., 2013). Tropical 
peat has high acidity (Abat et al., 2012; Sangok et al., 2020) 
and low nutrient status (Watanabe et al., 2013). The 
decreasing soil pH in peat could increase Ni availability (Lin et 
al., 2015; Ma et al., 2013), which exceeds normal 
concentrations of other nutrients in soils affected by 
ultrabasic rocks. Hence, the imbalance competition between 
higher amounts of available Ni and other cations in soil and 
root exchange complexes could result in cation leaching from 
the soil system, disruption of cation absorption, and 
interference with plant growth (Anda, 2012; Campillo-Cora et 
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al., 2020; Jagetiya et al., 2013; Rajapaksha et al., 2012; Wang 
et al., 2015). Consequently, Ni distribution in peat should be 
monitored to achieve better plant performance and healthy 
agricultural productivity. 

Detailed studies of Ni characteristics represented by its 

distribution in peat overlying an ultrabasic formation and its 

relationships with other peat properties are still scarce, 

except for some reports from laboratory-based experiments 

(Bartczak et al., 2018; Di Giuseppe et al., 2017; Lin et al., 

2015). Therefore, the objective of this study was to reveal the 

characteristics of Ni in peat at several depths and several 

distances from the border of the ultrabasic mineral soil 

through its total, exchangeable, water-soluble, and adsorbed 

distributions. The relationships between Ni and some peat 

chemical properties such as pH, cation exchange capacity 

(CEC), and macro-and micronutrients were also examined.  

 

2. Materials and methods 

2.1 Soil Sampling 
The study was conducted from March 2018 to January 

2019. A straight observation line parallel to the toposequence 

(Fig. 1) was surveyed from the edge of peat at 

121°28'53.988"E and 2°6'36.991"S toward the center of the 

peat at 121°28'56.717"E and 2°6'28.152"S. The study site is a 

backswamp between the Laa and Tambalako Rivers at Molino 

Village, East Petasia District, North Morowali, Central 

Sulawesi. Composite samples of peat material (± 1 kg) were 

collected using a hoe at depths of 0–30, 30–60, and 60–90 cm 

along the line at distances of 100, 200, 300, 400, 500, and 600 

m from the border of the ultrabasic mineral soil. In total, 36 

samples were collected. An additional ultrabasic mineral soil 

sample (± 1 kg) was taken according to the predicted source 

location of mineral soil.  

 

2.2. Laboratory Measurements 
Peat chemical analyses were carried out at the Soil 

Chemistry and Fertility Laboratory, Soil and Land Resources 

Department, Faculty of Agriculture, IPB University. Analyses 

of peat samples in wet conditions (similar to field conditions) 

included: i) measurement of water-soluble Ni using distilled 

water extractant equilibrated for 3 days at room temperature 

(25o C); ii) measurement of total Ni using a wet digestion 

method with HNO3 and HClO4 as extractants; (iii) 

measurement of exchangeable Ni using DTPA–TEA extractant 

solution consisting of 0.005 M DTPA (diethyl triamine penta-

acetic acid) with 0.01 M CaCl2 and 0.1 M TEA 

(triethanolamine) at pH 7; and (iv) determination of peat 

water content using the gravimetric method. The resulting 

solutions (soluble Ni: equilibrated Aquadest, total Ni: wet 

digestion, exchangeable Ni: DTPA–TEA) were measured using 

a Shimadzu AA-6300 atomic absorption spectrophotometer. 

Adsorbed Ni was calculated as the difference between the 

amount of exchangeable Ni and the amount of water-soluble 

Ni. The analysis of total Ni in ultramafic mineral soil material 

was conducted at the Center for Research and Development 

of Mineral and Coal Technology (Tekmira) Laboratory, 

Bandung, West Java.

. 

 

 
Figure 1. Location of study site and sampling design of this research (modified after GIA (2020) and Ritung et al. (2019)). 
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Table 1. Spearman correlation (rs) between total, exchangeable, water-soluble, and adsorbed Ni with peat depth and distances 

from ultrabasic mineral soil 

Factors 
rs (n = 36) 

Total Ni Exch. Ni Water-soluble Ni Adsorbed Ni 

Ni Fraction     
Total Ni 1.00    
Exchangeable Ni     0.48** 1.00   
Water-soluble Ni     0.47** 0.11 1.00  
Adsorbed Ni      0.38*      0.96** −0.11           1.00 

Peat Depth    −0.33* −0.36*  0.28             −0.48** 
Distances    −0.60** −0.41*    −0.53**        −0.31 

Remark: Asterisk value represents significant correlation (*p-value <0.05; ** p-value <0.01) 

 

2.3. Statistical Analyses 
The peat chemical data for the study site, including pH, 

CEC, and total and exchangeable macro- and micronutrients 
(K, Ca, Mg, Fe, Cu, and Zn) were provided with permission 
from Pulunggono et al. (2020) for comparison with Ni. 
Statistical processing was performed using the analysis of 
variance (ANOVA) method followed by Tukey’s honest 
significance test (HSD) at a 95% confidence interval. Multiple 
linear regression based on peat depth, distance from 
ultrabasic mineral soil, and chemical data was also conducted 
in order to develop an equation for each Ni fraction which was 
plotted as a response. Macro- and micronutrient 
concentrations of K, Ca, Cu, and Zn were not used as 
predictors in multiple linear regression analyses due to their 
insignificant concentrations compared to Ni. The Spearman 
rank correlation test (rs) was also carried out on the 
relationships between Ni and pH, CEC, water content, macro- 
and micronutrients, depths of peat samples, and distance 
from ultrabasic mineral soils based on data distribution, and 
supplemented with t-tests at 95% confidence intervals. 
Statistical analyses were performed using the computer 
programs Microsoft Excel and Minitab version 16.2.1. 
 

3. Results 
3.1.Total, Exchangeable, Water-Soluble, and Adsorbed 

Ni Distributions in Peat along the Transect  
Total and exchangeable Ni in this study (Fig. 2 and Table 

1) decreased significantly with increasing peat depth and 

distance from ultrabasic mineral soil. Adsorbed Ni correlated 

negatively with depth and distance. The water-soluble Ni 

decreased significantly with increasing distance from 

ultrabasic mineral soil (Table 1).  

With respect to the distance from the ultrabasic mineral 

soil, the total and exchangeable Ni in Fig. 2 fluctuated and 

showed different patterns between the distances of less than 

400 m and greater than 400 meters. At distances of less than 

400 meters from the ultrabasic mineral soil, exchangeable Ni 

tended to decrease, ranging from around 40 to 60% of total 

Ni. Meanwhile, total Ni tended to increase with distance. By 

contrast, exchangeable Ni tended to increase at distances of 

500 to 600 meters, ranging from about 70 to 90% of total Ni, 

while total Ni tended to decrease with increasing distance. 

Moreover, the exchangeable Ni extracted by DTPA consisted 

mainly of the adsorbed fraction (around 77 to 99%) and a 

small amount of water-soluble Ni (about 1 to 23%).  

The Ni in peat at the study site inherited from ultrabasic 
mineral soil is shown in Table 1. A higher nickel content was 
also recorded by Fu et al. (2014) at the same geological 
formation. Ni recorded in this study had a higher standard 
deviation, possibly due to different sources of ultrabasic 
mineral soil sampling. 

 

3.2. Relationships Between Ni and Several Chemical 
Soil Properties 

The total and exchangeable macro- and micronutrients 
are modified after Pulunggono et al. (2020), and shown in Fig. 
3 and Fig. 4. The amounts of total and exchangeable Mg were 
highest, compared to K and Ca. In comparison with Ni (Fig. 3), 
the total and exchangeable Mg showed equivalent contents 
(avg. 116.08% and 91.44%, respectively). However, very low 
contents of K and Ca were recorded in this study, which 
indicates the leaching process. With respect to the distance 
from the mineral soil, the macronutrient K showed a pattern 
similar to that of Ni, while Ca and Mg showed no clear 
patterns. The total and exchangeable K contents were 
relatively higher at distances of less than 400 meters than at 
greater distances. By contrast, total and exchangeable Ca and 
Mg fluctuated and were not affected by increasing distance. 
Total K, Ca, and Mg tended to decrease with depth. 

According to Fig. 4 and Pulunggono et al. (2020), the total 
and exchangeable contents of micronutrients in peat at the 
study site were lower compared to the Ni concentration. The 
total contents of all the micronutrients decreased with 
increasing depth, showing a similar distribution pattern to 
total Ni (Fig. 2). Therefore, the total distribution of 
micronutrients in peat at all distances from ultrabasic mineral 
soil showed a contrasting pattern compared to their 
exchangeable forms. The total Cu and Zn showed correlations 
with distance from ultrabasic mineral soil identical to that of 
total Ni; however, total Fe fluctuated and tended to correlate 
negatively with distance. In contrast to exchangeable Ni, the 
concentration of exchangeable Fe, Cu, and Zn increased 
significantly with increasing distance from the ultrabasic 
mineral soil (Fig. 2, Fig. 4; Pulunggono et al. (2020). 

Cation exchange capacity and peat water content in Fig. 5 
increased with increasing distance from ultrabasic mineral  
soil; however, only the latter showed a notable relationship  
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Figure 2.  Total, exchangeable, water-soluble, and adsorbed Ni distribution in peat: (a) based on peat depth, and (b) based on 

distance from ultrabasic mineral soil. 

 
(rs = 0.19, p > 0.05; 0.54, p < 0.05; respectively). Meanwhile, 
all of these parameters showed a significant positive 
correlation with depth (Fig. 5; Pulunggono et al. (2020).  

In general, macronutrients showed an irregular pattern in 
their relationship with all observed Ni fractions compared to 
micronutrients (Table 3). Total and exchangeable K contents, 
which were reported to be relatively lower than the others, 
presented significant positive correlations with total and 
water-soluble Ni, whereas Mg, recognized as the nutrient 
with the highest concentrations, only showed a significant 
relationship with water-soluble Ni. On the other hand, 
despite several small values, both total and exchangeable 
micronutrient fractions showed a relatively uniform 
relationship with whole observed Ni fractions. All 
exchangeable micronutrients correlated negatively with the 
whole Ni fractions, particularly for exchangeable Fe, which 
had significant relationships with total, exchangeable, and 
water-soluble Ni. Meanwhile, the opposite relationship was 
observed for their total contents. The total Fe, Cu, and Zn 
correlated significantly with total Ni. Furthermore, total Cu 
also had a significant positive correlation with exchangeable 
and adsorbed Ni.  

The multiple linear regression analysis (Fig. 6) showed that 
the peat depth, pH, and distance from ultrabasic mineral soil 
exhibited a remarkable influence on exchangeable and 
adsorbed Ni. Furthermore, the same analysis also showed the 
notable importance of exchangeable Fe in governing total Ni 
content in peat at the study site. The water-soluble Ni was 
strongly controlled by depth. The relationships between all 
observed parameters and each Ni fraction are presented in 
Equations 1–4. 

Total Ni = 891 − 0.630 Distance − 3.45 Depth + 0.356 

Exch Mg − 3.81 Exch Fe + 0.580 Total Mg + 

1.17 Total Fe + 1.88 CEC − 41 pH + 0.60 

Water Content ............................................ [Eq. 1] 

Exchangeable Ni = 2074 − 0.639 Distance − 7.36 

Depth − 0.0114 Total Ni + 0.0013 Exch Mg 

− 0.122 Exch Fe – 0.0238 Total Mg − 0.070 

Total Fe + 0.36 CEC − 216.0 pH + 0.267 

Water Content ............................................ [Eq. 2] 

Water Soluble Ni = −7.2 + 0.00844 Total Ni + 0.0112 

Distance + 0.720 Depth + 0.0089 Exch Mg 

− 0.0712 Exch Fe − 0.0040 Total Mg + 

0.0599 Total Fe + 0.367 CEC − 2.1 pH − 

0.0907 Water Content ................................. [Eq. 3] 

Adsorbed Ni = 2081 − 0.0199 Total Ni − 0.651 

Distance − 8.08 Depth − 0.0077 Exch Mg − 

0.051 Exch Fe − 0.0198 Total Mg − 0.130 

Total Fe − 0.00 CEC − 213.9 pH + 0.358 

Water Content ............................................ [Eq. 4] 

 
4. Discussion 

The high Ni content in the peat did not originate from 
organic parent material; rather, it derived from ultrabasic 
mineral soil with high Ni content. According to Takada et al. 
(2016) and Hodgkins et al. (2018), tropical peatland 
developed from ferns, woody angiosperms, and gymnosperm 
vegetation. Trace elements are released in very low 
quantities from decomposition of the organic material 
(Armanto, 2019; Hosokawa et al., 2016; Nelvia, 2018; Sutejo 
et al., 2017). Topography analysis through field observation 
and the National Digital Elevation Model (GIA (2020); Fig. 1) 
showed that the study area is situated in a valley that 
accommodated the downstream flow of permanent and 
intermittent streams, which transported material high in Ni 
content from the upslope area (Table 1). Fu et al. (2014) 
reported that soil at the study site overlies Ni-rich ultrabasic 
rocks consisting mainly of lherzolite, harzburgite, and 
peridotite. 
 
Table 2. Total Fe and Ni from ultrabasic mineral soil 

adjacent to the toposequence 

Element 
Total 

(mg kg-1) 

Information 
and 
reference 

Nickel 
(Ni) 

4,367. ± 2,155 Mineral soil, 
study site 

Iron (Fe) 249,300. ± 101,183 Mineral soil, 
study site, 
Pulunggono 
et al. (2020) 

Zinc (Zn) 257.  ± 65 

Copper 
(Cu) 

110.  ± 17 

Iron (Fe) 62,319.79   Ultrabasic 
bedrock, Fu 
et al. (2014) 

Nickel 
(Ni) 

2,043.08   
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Table 3. Spearman correlation (rs) between total, exchangeable, water-soluble, and adsorbed Ni with peat chemical 
properties  

Factors 
rs (n = 36) 

Total Ni Exch. Ni Water-soluble Ni Adsorbed Ni 

Macronutrients     

Exch. K 0.64** 0.15 0.58** 0.04 

Exch. Ca  0.37* 0.16 0.32 0.15 

Exch. Mg  0.31 0.05 0.38* −0.02 

Total K  0.66** 0.19 0.45** 0.15 

Total Ca  0.08 −0.01 −0.16 0.03 

Total Mg  0.29 0.03 0.02 0.05 

Micronutrients 

Exch. Fe  −0.77** −0.42* −0.38* −0.32 

Exch. Cu  −0.31 −0.23 −0.42* −0.20 

Exch. Zn  −0.31 −0.19 −0.16 −0.24 

Total Fe    0.51** 0.23 0.01 0.27 

Total Cu    0.61** 0.56** 0.22 0.48** 

Total Zn    0.78** 0.37* 0.42* 0.28 

Other peat properties     

pH H2O −0.17 −0.00 −0.12 0.09 

CEC −0.35* −0.01 −0.13 0.01 

Water content −0.46** −0.23 −0.27 −0.20 

Remark: Asterisk value represents significant correlation (*p-value <0.05; ** p-value <0.01) 
 

The distribution of Ni in peat is determined by the degree 
and contribution of the heterogeneous soil fraction at the 

peat edge, which tends to become homogenous towards the 
center of the peat. Close to the border, the peat has a thin 
organic layer and some amounts of mineral soil containing Ni 

that originated from an elevated area and from below in the 
substratum, mixed with different decomposition stages of 
organic material. In this area, Ni movement and distribution 

are regulated by organic acids (Antić-Mladenović et al., 2017; 
Rinklebe et al., 2016) combined with pH (Ma et al., 2013), 
water content (Bartczak et al., 2018), and the presence of 

ultrabasic-derived soil materials such as clay (Osakwe, 2013; 
van der Ent et al., 2016), Fe oxides and Fe oxy-hydroxides 
(Antić-Mladenović et al., 2017; Bani et al., 2014; Rinklebe et 

al., 2016).  
Based on multiple regression and Spearman rank 

correlation analyses, our results seem consistent with the 

statement above and indicate that Ni distributions in peat at 
the study transect were correlated significantly with a 
combination of Fe, pH, organic material (presenting as CEC 

and adsorbed Ni), and water content, with significant effects 
due to peat depth and distance from ultrabasic mineral soil 
(Fig. 6, Table 2, and Table 3). The depth was recorded as the 

strongest factor controlling exchangeable, water-soluble, and 
adsorbed Ni distributions (Fig. 6). The concentrations of these 
fractions are also dictated by the total Ni (Table 2). Peat 

alongside the transect was classified as thick peat (200–300 
cm) in the hemic decomposition stage (Ritung et al., 2019), 

indicating that the peat organic material had been 
moderately decomposed, which contributes high CEC. The 
peat might be contaminated with mineral soil, as discussed 

below (Pulunggono et al. (2020); Fig. 5).  

According to previous evidence, soil acidity influences the 
dissolution and precipitation of Ni in soil solutions (Antić-
Mladenović et al., 2017; de Macedo et al., 2016; Ma et al., 
2013). Our results, however, showed no significant 
correlation of soil acidity or pH with Ni fractions (Table 3). No 
significant relationship was found between pH and any 
observed Ni soluble fraction in Table 3, indicating that pH was 
not the factor defining Ni distribution in peat at the study site, 
which was also described well by the multiple regression in 
Fig. 6. Similar results were also reported by (D’Amico & 
Previtali, 2012) in ultrabasic derived mineral soil 

Exchangeable Ni (Fig. 2) was dominated by adsorbed Ni 
with a small amount of water-soluble Ni. CEC was the second 
most important factor controlling water-soluble Ni, which is 
the most labile part of Ni (Fig. 6). However, the high CEC in 
Fig. 5 indicated that the soil exchange complex was composed 
mainly of organic substances. This indicates that most Ni in 
peat at the study site was bonded to the soil organic exchange 
complex, which could be exchanged by DTPA. Other research 
also found similar results (Koistinen et al., 2015).  

Similar to other findings (Antić-Mladenović et al., 2017; 
Antić-Mladenović et al., 2011; Rinklebe & Shaheen, 2014), Fe 
in this study exhibited a strong relationship with Ni, marked 
by significant influence in the multiple regression analysis 
(Fig. 6) and strong negative correlations of its exchangeable 
fraction with total, exchangeable, and water-soluble Ni (Table 
3). The total Fe also showed a significant positive correlation 
with total Ni. The significant correlation of Fe with Ni would 
reflect the reduction of peat water content due to the 
establishment of drainage canals for oil palm plantations. This 
causes the formation of Fe oxides or Fe oxy-hydroxides under 
aerobic conditions and low water contents (Cabala et al., 
2013).  
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Figure 3. Total and exchangeable macronutrients of K, Ca, and Mg in peat. (a) Total and exchangeable Mg based on depth, (b) 

total and exchangeable K and Ca based on depth, (c) total and exchangeable Mg based on distance from ultrabasic 
mineral soil, and (d) total and exchangeable K and Ca based on distance from ultrabasic mineral soil (reprinted by 
permission from Pulunggono et al. (2020)). 

 
Even though Fe in the form of Fe2+ may compete with Ni 

in root and soil exchange complexes (Melo et al., 2014; Yusuf 
et al., 2011), Ni has a high affinity for and bonds to Fe oxides 
in high pH (Alves et al., 2011; Sheng et al., 2018; Sipos et al., 
2014). Furthermore, other researchers have reported that Ni 
may be co-precipitated with Fe(OH)3 during Fe2+ oxidation 
(Antić-Mladenović et al., 2017; Bani et al., 2014; Frohne et al., 
2014). This process, on our study site, occurs at the peat 
surface, which has a relatively high pH and contains high Fe. 
Cu and Zn also showed a tendency to compete with Ni in 
exchange complexes (Table 3; Aziz et al. (2015); Melo et al. 
(2014); Nishida et al. (2015); Sabir et al. (2014)), although 
both cations had insignificant concentrations compared to Ni 
(Fig. 4).  

The values and standard deviations of total Ni increased 
with distance from 100 to 400 meters from ultrabasic mineral 
soil. However, total Ni fell below 900 mg kg-1 with low 
standard deviation at distances of 500 and 600 meters. 
Moreover, Fig. 4 shows that exchangeable Fe at distances of 
less than 400 meters ranged from about 1.5 to 2 times higher 
than that found at greater distances, with a similar pattern 
found for exchangeable Ni. Furthermore, CEC in Fig. 5 tended 
to increase with increasing peat depth and distance from 
ultrabasic mineral soil. These results indicate the 
accumulation of the mineral soil fraction, the formation of Fe 
oxides/oxy-hydroxides, and/or co-precipitation of Ni–Fe in 
the peat surface at distances of less than 400 meters from 
mineral soil. Exchangeable Ni decreased due to fixation by Fe 
oxides and eventually failed to be chelated by DTPA 
extraction, as represented by the wide gap between 
exchangeable and total Ni contents at this distance (Fig. 2). 

Furthermore, organic acids may play a primary role in Ni 
dissolution and exchangeability at farther distances according 
to the increasing soil acidity and CEC (Fig. 5) and also the 100 
% Fe dissolution (Fig. 4).  

The water-soluble Ni in peat (Fig. 2) tended to increase 
with increasing depth, while the adsorbed Ni decreased 
significantly. These results indicate the difference in organic 
material decomposition level between the peat surface and 
the deeper layer. Compared to the deeper layer, the organic 
material at the peat surface is more exposed to the 
decomposition process and frequent drying due to the 
movement of the groundwater table (Nurzakiah et al., 2014; 
Nurzakiah et al., 2020); these enhance aerobic oxidation 
(Wakhid et al., 2017) and increase CEC (Armanto, 2019). 
Hence, Ni is adsorbed more on the organic matter at the 
surface that has a higher capacity of organic exchange sites 
than in the deeper layer that relatively remains intact. 
However, the CEC values obtained in this study (Fig. 5) 
showed the opposite pattern. These results may have 
occurred due to the movement of mineral soil covering the 
peat surface. 

In general, Ni had a positive charge, similar to H and the 

macronutrients of K, Ca, and Mg. This can lead to competition 

among these cations in the soil and on root cation exchange 

sites. However, the exchangeable K, Ca, and Mg did not 

correlate with Ni as shown in Table 3. It seems that the 

amount of Ni on the soil exchange sites is not affected by its 

competition with K, Ca, and Mg. At the study site, 

exchangeable and total K and Ca were relatively low 

compared to exchangeable and total Ni (Fig. 2, Fig. 3). 
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Figure 4. Total and exchangeable micronutrients of Fe, Cu, and Zn in peat. (a) Total and exchangeable Fe based on depth, (b) 
total and exchangeable Cu and Zn based on depth, (c) total and exchangeable Fe based on distance from ultrabasic 
mineral soil, and (d) total and exchangeable Cu and Zn based on distance from ultrabasic mineral soil (reprinted by 
permission from Pulunggono et al. (2020)). 

 

   
 
Figure 5.  Peat soil properties at the study site. (a) CEC and water content based on depth, (b) pH based on depth, (c) CEC and 

water content based on distance from ultrabasic mineral soil, and (d) pH based on distance from ultrabasic mineral 
soil (reprinted by permission from Pulunggono et al. (2020)). 
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Melo et al. (2014) showed that Ni showed less affinity with 
peat compared to Cu, Fe, and Co, whereas the organic-Ni 
complexes were more stable than those of Mn and Zn. 
Consistent with this study, weak relationships between Ni and 
K and Ca in plant roots and on soil exchange complexes are 
also reported by other researchers (Aziz et al., 2015; Lin et al., 
2015). Meanwhile, exchangeable and total Mg showed 
similar contents compared to exchangeable and total Ni (avg. 
91% and 116 %, respectively). Mg (Table 3), relying on mass 
action, may inhibit Ni absorption by plant roots. According to 
Jiang et al. (2017) and Amjad et al. (2020), Mg had an 
antagonistic effect on Ni in the root zone. High total Ni would 
not cause hazardous effects for human and animal health due 
to its low availability at the near-neutral pH of mineral soil 
(Banerjee & Roychoudhury, 2020; Gonnelli & Renella, 2013). 
However, low pH was detected in peat soil at the study site 
(Fig. 5). This can increase available Ni that can be absorbed by 

the plant roots and enter the food chain (Olafisoye et al., 
2020; Sreekanth et al., 2013; Zhang et al., 2015). The water-
soluble Ni in soil solution (Fig. 2) is also identified at levels 
higher than the 0.1–0.5 mg kg-1 defined as a critical level for 
plant phytotoxicity (Gonnelli & Renella, 2013).  

The domination of Ni in soil solution and exchange 

complexes enhances plant root preference in absorbing and 

accumulating Ni in its tissues (Hassan et al., 2019; Sreekanth 

et al., 2013; Wang et al., 2015). An elevated Ni concentration 

in plant tissue inhibits root development (Abd_Allah et al., 

2019; Uruç Parlak, 2016), stimulates electrolyte leakage 

(Yusuf et al., 2012), and disrupts the photosynthesis process 

(Awasthi & Sinha, 2013; Khair et al., 2020; Mahmood et al., 

2016). Unfortunately, there is no reported data for the 

assessment of Ni in palm oil and its derivatives that originated 

in this area.  

 

 
Figure 6. Multiple regression standardized effects plots for total Ni (a), exchangeable Ni (b), water-soluble Ni (c), and adsorbed 

Ni as a response (d) (Remarks: Predictors/factors that exceeded the dotted line are considered significant) 
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5. Conclusion 
The high Ni content in peat at the study transect is caused 

by Ni accumulation in a valley that accommodated the 
downstream flow of permanent and intermittent river 
streams, which transported material high in Ni content from 
the hilly area. Ni distribution in peat at the study transect is 
mainly governed by the combination of Fe, organic material 
(presenting as CEC and adsorbed Ni), and water content, 
reflecting significant effects of peat depth and distance from 
ultrabasic mineral soil. The depth was recorded as the 
strongest significant factor that controlled exchangeable, 
water-soluble, and adsorbed Ni distribution. There is an 
indication of mineral soil fraction accumulation in the peat 
surface at distances of 100–400 meters from the ultrabasic 
mineral soil, as indicated by the values, standard deviations, 
and patterns of Ni, CEC, and Fe contents. 
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