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Indigofera tinctoria is a legume that is cultivated as a source of natural indigo dyes. As a 
legume, Indigofera tinctoria is capable of symbiosis with soil microbes. This study evaluates 
the effects of light intensity and microbial inoculation on root growth and nodulation. The 
study used a complete randomized block design with a split-plot pattern. Light intensity 
was the main plot with four levels of light intensity 100%, 50%, 25%, and 10%. Microbial 
inoculation was a subplot with four levels without inoculation, mycorrhizae inoculation, 
rhizobium inoculation, and double inoculation with both mycorrhizae and rhizobium. The 
results obtained show that light intensity and microbial inoculation affected root length, 
root fresh weight, root biomass, and the number of nodules. 50% light intensity was 
optimum for root length, while 100% light intensity was optimum for root fresh weight, 
root biomass, and a number of nodules. Root growth and nodulation were further 
increased with double inoculation. The combination of light intensity and microbial 
inoculation affected root biomass and nodulation. The combination of 100% light intensity 
and double inoculation resulted in the highest root biomass and nodule numbers. 
Mycorrhizae and rhizobium have a synergistic relationship to nodulation and root growth. 
Double inoculation with mycorrhizae and rhizobium efficiently increased root biomass and 
the number of nodules under low or high light intensity. 

How to Cite: Budiastuti, M. S., Purnomo, D., Supriyono, Pujiasmanto, B., and Desy S. (2020). Effects of light intensity and co-
inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. Sains Tanah 
Journal of Soil Science and Agroclimatology, 17(2): 94-99 (doi: 10.20961/stjssa.v17i2.40065) 

 

1. Introduction 

Synthetic dyes used in the batik industry in Indonesia 
contribute to environmental pollution by producing waste 
which causes groundwater pollution (Kristijanto et al., 2011; 
Handayani et al., 2019). The environmental impact caused by 
synthetic dye waste must be reduced; one option is the use 
of natural dyes. Indigofera tinctoria is a family of legume that 
contains an indigo pigment that produces a natural blue color 
suitable to replace synthetic dyes in the batik industry (Hariri, 
Chikmawati, & Hartana, 2017). 

Indigo pigment production is very responsive to light 
(Angelini, Tozzi, & Nassi O Di Nasso, 2004). This is because the 
indigo precursor is a metabolite compound that contains 
nitrogen and is produced through the shikimic acid pathway. 
In the shikimic acid pathway, precursors derived from 
glycolysis and pentose phosphate are converted to aromatic 
amino acids (Taiz & Zeiger, 2006). Nitrogen containing 
metabolites alkaloids, glucosinolates, and cyanogen 

glycosides are increased with reduced light intensity (Coelho 
et al., 2007), while growth and plant biomass are optimum at 
high light intensities (Wu et al., 2017). Plant growth and yield 
are largely determined by light intensity and nutrient 
availability; the supply of nutrients needed to optimize the 
growth and yield of Indigofera tinctoria varies based on light 
intensity. 

Nutrient requirements can be met through the 
incorporation of mycorrhizae and rhizobium. Indigofera 
tinctoria is a legume that can form a symbiotic tripartite 
association with rhizobium which induces the production of 
nodules and mycorrhizae which plays a key role in phosphate 
and nitrogen efficiency (Xavier & Germida, 2003). The roots 
of Indigofera tinctorial plants are symbiotic with rhizobium in 
the nitrogen cycle, while mycorrhizae infect the root system 
of the host plant producing external hyphal tissue that grows 
rapidly and penetrates the sub soil layer, thereby increasing 
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root capacity for nutrient and water absorption (Smith, Grace, 
& Smith, 2009). Mycorrhizae and Rhizobium can increase 
plant growth by regulating the balance of nutrients and 
hormones; as growth regulators, they dissolve nutrients and 
induce resistance to plant pathogens. In addition, these 
microbes also show synergistic interactions with other 
microbes in the soil environment (Nadeem, Ahmad, Zahir, 
Javaid, & Ashraf, 2014). 

 Double inoculation with mycorrhizae and rhizobium 
significantly increases root growth and yields of Glycine max, 
Phaseolus mungo, Vigna radiate, Cicer arietinum, Lens 
culinaris, and Pisum sativum under low or high light intensity 
(Shukla et al., 2018). Light intensity significantly affects 
rhizobium and arbuscular mycorrhizal fungal (AMF) activities 
(Kumar et al., 2007; Houx et al., 2009; Shukla et al., 2009; Sarr 
& Yamakawa, 2015). The study of Sindhu et al. (2016) found 
that the combination of organic fertilizer and mycorrhizae can 
increase the growth of Indigofera tinctoria, indican content, 
and nitrogen and potassium content in the soil. Few studies 
have been conducted on the combination of light intensity 
treatment with microbial inoculation on the root growth and 
nodulation of Indigofera tinctoria. The novelty of this study is 
that it combines both light intensity and microbial inoculation 
in Indigofera tinctoria in tropical climates to assess the effects 
of mycorrhizal and rhizobium inoculation under several light 
intensities on root growth and nodulation.  

 

2. Materials and Methods 

The study was conducted from April to November 2019, 
in Puron Village, Bulu District, Sukoharjo, Central Java, 
Indonesia. The research location is at 110°51’49.44”E and 
7°48’54.3”S. Based on the results of soil analysis, the soil had 
a neutral pH of 7.31, 0.36% nitrogen (N), 15.72 ppm 
phosphorous (P), and 0.42 me 100 g of soil potassium (K). C-
organic was low at 1.52%, and organic matter was low at 
2.62%. Materials used in this study included green seeds of I. 
tinctoria, mycorrhizae, and rhizobium obtained from the 
Laboratory of Microbiology, Faculty of Agriculture, Gadjah 
Mada University. The instruments were paranets with various 
densities to produce different light intensity and a lux meter 
used to measure light intensity.  

This study used a complete randomized block design 
arranged in a split-plot pattern. The levels of light intensity for 
the main plot consisted of A1 = 100% light intensity (6232.8 
cd m-2), A2 = 50% light intensity (3013.05 cd m-2), A3 = 25% 
light intensity (1605.9 cd m-2), and A4 = 10% light intensity 
(623.99 cd m-2). Microbial inoculations as subplots consisted 
of: B1 = without inoculants, B2 = rhizobium 1 g plant-1, B3 = 
mycorrhizal 10 g plant-1, B4 = mycorrhizal 10 g plant-1 and 
rhizobium 1 g plant-1. Each unit of the experiment was 
repeated three times so that there were 48 total 
experimental units, and in a single unit, there were six plants. 
Rhizobium sp. was applied while the plants were in the 
nursery; mycorrhizal inoculation was applied during 
transplant into the study field. 

Observation variables included the number of nodules, 
root length, root fresh weight, and root biomass measured at 
the maximum vegetative phase 8 weeks after planting. 
Research data were analyzed using analysis of variance with 

α 5% test level 95% confidence level. If it had a significant 
effect, further analysis was done using Duncan's Multiple 
Range Test (DMRT). 

 

3. Results 

Light intensity affects root length, root fresh weight, root 
biomass, and the number of nodules (Table 1). The result of 
the light intensity of 50% on root length was not significantly 
different from light intensities of 100% and 25%. The light 
intensity of 10% showed the shortest root fresh weight, root 
biomass, and the number of nodules. The light intensity of 
100% showed the highest root fresh weight of 12.15 g and 
root biomass of 6.13 g. On the number of nodules, a light 
intensity of 100% was not significantly different from a light 
intensity of 25%.  

Table 1. Effect of light intensity on root and nodule growth 

Light 
Intensity 

(%) 

Root length  
 

(cm) 

Root fresh 
weight  

(g) 

Root 
Biomass  

(g) 

Number of 
nodules 

100 20.92 ab 12.15 c 6.13 c 24.75 c 
50 23.17 b 7.93 b 3.54 b 21.25 b 
25 22.33 b 9.46 b 4.50 b 23.59 bc 
10 18.74 a 4.78 a 2.37 a 17.58 a 

Note: Numbers followed by the same letters in the same 
column showed no significant differences based on 
the DMRT level of 5%. 

 
Table 2. Effect of microbial inoculation on root fresh weight, 

biomass, length, and nodulation 

Microbial 
Inoculation 

Root 
length 
(cm) 

Root fresh 
weight 

(g) 

Root 
Biomass 

(g) 

Number 
of 

nodules 

Without 
inoculation 

13.83 a 4.06 a 1.48 a 13.17 a 

Mycorrhizae 25.58 c 6.64 b 3.06 b 18.92 b 
Rhizobium 19.17 b 9.71 bc 4.89 c 22.17 c 
Mycorrhizae + 
rhizobium 

26.58 c 13.89 c 7.11 d 32.83 d 

Note: Numbers followed by the same letters in the same 
column showed no significant differences based on 
the DMRT level of 5%. 

Table 3. Combination of light intensity and microbial 
inoculation on root biomass (g) 

Light 
Intensity 

(%) 

Microbial Inoculation 

WI M R M+R 

100 1.59 ab 4.19 abcd 7.67 e 11.09 f 
50 1.18 ab 2.22 abc 5.03 cde 5.74 de 
25 2.32 abc 3.82 abcd 4.35 bcd 7.51 e 
10 0.80 a 2.04 abc 2.52 abcd 4.11 abcd 

Note: WI: Without inoculation, M: Mycorrhizae, R: 
Rhizobium, M+R: Mycorrhizae + rhizobium. Numbers 
followed by the same letters showed no significant 
differences based on the DMRT level of 5%. 
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Table 4. Effect of combining light intensity and microbial 
inoculation on the number of nodules 

Light 
Intensity 

(%) 

Microbial Inoculation 

WI M R M+R 

100 12.67 a 19.00 abcd 23.00 cde 39.33 f 
50 14.33 ab 18.00 abcd 23.67 de 39.30 f 
25 13.67 a 24.00 de 22.33 bcde 29.00 e 
10 12.00 a 14.67 abc 19.67 abcd 24.00 de 

Note: WI: Without inoculation, M: Mycorrhizae, R: 
Rhizobium, M+R: Mycorrhizae + rhizobium. Numbers 
followed by the same letters showed no significant 
differences based on the DMRT level of 5%. 

Table 5. Correlation between root length, root fresh weight, 
root biomass, and a number of nodules 

Note: ** Correlation is significant at the 0.01 level (2-tailed). 
 

Based on an analysis of the variances, microbe inoculation 
significantly affects root length, root fresh weight, root 
biomass, and the number of nodules (Table 2). Double 
inoculation with both mycorrhizae and rhizobium increased 
root length 92% compared to without inoculation. Root 
length with double inoculation was not significantly different 
from mycorrhizae inoculation alone. Root fresh weight on 
double inoculation was not significantly different than 
rhizobium inoculation alone. Without inoculation showed the 
lowest root fresh weight and the results were significantly 
different from all treatments. The highest increases in root 
biomass and a number of nodules were seen with double 
inoculation. 

The combination of light intensity and microbial 
inoculation significantly affected root biomass (Table 3). The 
highest root biomass, 11.09 g, was found in the combination 
of 100% light intensity with double inoculation. The 
combination of light intensity and microbial inoculation 
significantly affected the number of nodules (Table 4). Double 
inoculation increased the number of nodules compared to 
without inoculation at several levels of light intensity. The 
number of nodules with a combination of double inoculation 
and 100% light intensity was not significantly different from 
the combination of double inoculation and 50% light 
intensity. Table 5 shows that root length positively correlated 
to root fresh weight, root biomass, and the number of 
nodules; increased root length predicts an increase in root 
fresh weight, root biomass, and the number of nodules.  
 

4. Discussion 

The combination of light intensity and microbial 
inoculation significantly affected root biomass (Table 3). 
Double inoculation increased root biomass compared to 

without inoculation at several levels of light intensity. Double 
inoculation with mycorrhizae and rhizobium efficiently 
increased yields under shade or not under shade (Shukla et 
al., 2018). In addition, double inoculation with mycorrhizae 
and rhizobium increased root length by 92% compared to 
without inoculation (Table 2). These results are presumably 
due to the formation of a mutualistic symbiotic relationship 
between the roots of Indigofera tinctoria with mycorrhizae 
and rhizobium microorganisms in the soil. The synergistic 
effect of mycorrhizal fungi and rhizobium on legume roots 
increased growth, nutrient uptake, and nitrogen fixation 
(Xavier & Germida, 2003). The association with AMF and 
rhizobia directly improved nutritional status and growth (Li et 
al., 2012). Rhizobium and AMF were found to be 
interdependent and engaged in mutual promotion (Haro, 
Sanon, Le Roux, Duponnois, & Traoré, 2018). AMF inoculation 
promoted root nodule formation and rhizobium inoculation 
increased the percentage of AMF infections (Xu et al., 2016). 
Besides, the double inoculation with mycorrhizae and 
rhizobium helped plants maintain beneficial liquid water 
paths (LWP) for the access of root water and accumulation of 
sugar levels in the roots (Chaudhary, 2019). Thus, the highest 
root fresh weight and root biomass were also found in double 
inoculation (Table 2). Root fresh weight and root biomass 
with double inoculation increased by 242% and 380%, 
respectively, compared to without inoculation. This is 
because double inoculation increased nutrient absorption, 
thereby encouraging optimum plant growth and biomass 
increases (Hemmat Jou and Besalatpour, 2018).  

 Mycorrhizae inoculation coupled with 10% light intensity 
decreased root biomass 105% when compared to 100% light 
intensity (Tabel 3). This result is expected as AMF colonization 
is reduced under low light intensity (Lau et al., 2012). The light 
intensity of 10% showed the shortest root biomass (Table 1) 
because low light intensity reduces the accumulation of net 
photosynthetic products and compounds needed for normal 
growth (Sauvadet et al., 2019). Decreased biomass of roots, 
stems, and leaves in low light correlates to a reduced rate of 
photosynthesis, transpiration, and conductance of stomata 
water vapor under low light (Mielke and Schaffer, 2010). 
Consistent with the correlations, (Table 5), root biomass 
decreased as a result of shorter root length. This result shows 
that root lengths are very short on 10% light intensity. This 
result was expected as the very low light inhibits the 
allocation of carbon to root growth (Gommers, Visser, Onge, 
Voesenek, & Pierik, 2013). Lower light intensity caused a 
significant decrease in the root fresh weight and biomass 
(Table 3). These results are consistent with Yang et al. (2008), 
which found that that root fresh weight and root biomass 
decreased at low light intensities and are the lowest at a light 
intensity of 16.7%. This is because growth depends on carbon, 
and carbon is greatly influenced by light conditions; the 
addition of carbon in roots comes from the stem through the 
phloem, while the main loss of root carbon occurs through 
respiration associated with ion growth and absorption (Li et 
al., 2014). As a result, the root shoot ratio was higher in plants 
with high levels of light treatment compared to plants with 
low levels of light treatment.  

 Root 
length 

Root fresh 
weight  

Root 
biomass 

Number of 
nodules 

Root length 1 .403** .432** .544** 
Root fresh weight  1 .947** .771** 
Root biomass   1 .800** 
Number of 
nodules 

   
1 
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Indigofera tinctoria is a member of the Leguminosae 
family. Plants of the Leguminosae family form a symbiosis 
with some rhizobial bacteria and develop nodules in the 
roots. The combination of light intensity and microbial 
inoculation significantly affects the number of nodules (Table 
4). Double inoculation increased the number of nodules 
compared to without inoculation at several levels of light 
intensity. This is in accord with Shukla et al. (2018) who found 
that double inoculation with mycorrhizae and rhizobium 
increases nodulation whether under shade or not under 
shade. Double inoculation increased the number of nodules 
by 149% compared to without inoculation (Tabel 2). AMF 
inoculation promoted root nodule formation while rhizobium 
inoculation increased the percentage of AMF infections 
(Gage, 2004). These results were expected; there is a known 
symbiotic relationship between mycorrhizae and rhizobium in 
Phaseolus vulgaris (Mortimer et al., 2012) and Vicia faba 
(Abd-Alla, El-Enany, Nafady, Khalaf, & Morsy, 2014); plants 
with double inoculation show higher nodulation, growth, and 
yield when compared to those inoculated with only 
mycorrhizae or only rhizobium. Nodulation requires P 
(Mortimer et al., 2008), and the development of AMF 
structures requires substantial N (Johnson, Wilson, Wilson, 
Miller, & Bowker, 2015). Rhizobium and mycorrhizae, when 
combined, facilitate the absorption of both N and P in 
legumes (Mortimer et al., 2008).   

Single inoculation with mycorrhizae increased the number 
of nodules by 43% compared to without inoculation (Table 2). 
Due to the introduction of AMF, more nodules are effective 
in attracting P and N and subsequent water absorption in 
legume plants (Andrade, Abreu, De Abreu, & Silveira, 2004). 
Mycorrhizae can increase rhizosphere soil phosphatase 
activity which further increases phosphate. Phosphate is an 
essential ingredient of plants for nodulation and growth 
(Sánchez-Díaz, Pardo, Antolín, Peña, & Aguirreolea, 1990). In 
addition, rhizobium inoculation increased the number of 
nodules by 68% compared to without inoculation (Table 2). 
These results are in line with Denton et al. (2017) where single 
inoculation or double inoculation with mycorrhizae and 
rhizobium significantly increased root growth and nodulation. 
This is presumably because rhizobium is able to increase 
nodulation and enzyme activity (Tilak, Ranganayaki, & 
Manoharachari, 2006). Rhizobium symbiosis with legumes 
affects the hydraulic characteristics of plant roots; rhizobium 
symbiosis causes a decreased osmotic potential of xylem sap 
so that the root osmotic water flow increases, then rhizobium 
inoculation increases plant growth (Franzini, Azcón, Ruiz-
Lozano, & Aroca, 2019). 

The combination of 10% light intensity with double 
inoculation and single inoculation yielded a low number of 
nodules. This is due to the fact that light intensity has a 
significant effect on rhizobium and AMF (Kumar et al., 2007; 
Houx III et al., 2009). Light is an important signal that controls 
the growth, development, and behavior of many organisms. 
All multicellular organisms have various sensor systems to 
detect light. Bacteria have both photosynthesis tools that 
convert light into chemical energy and photoreceptor 
proteins. One of the bacteria that play a role in N fixation is 
rhizobium. Rhizobium bacterium in the soil infects the root 

hairs of legumes and induces nodule formation and nitrogen-
fixing. Light influences the reproduction of these bacteria; 
brighter light can increase the number of nodules per plant 
(Bonomi et al., 2012) and improve nitrogen nodulation and 
fixation in legumes (Rinnan et al., 2005). In this study, light 
intensity affected the number of nodules (Table 1); the lowest 
number of nodules was at a light intensity of 10%. Reductions 
in the number of nodules and dry weight of nodules with low 
light intensity have also been reported (Sarr & Yamakawa, 
2015). 

 

5. Conclusion 

The light intensity and microbial inoculation individually 
and together affect root biomass and nodulation in Indigofera 
tinctoria. Double inoculation with mycorrhizae and rhizobium 
efficiently increases root biomass and the number of nodules 
independent of light intensity. With double inoculation, 
mycorrhizae and rhizobium have a synergistic relationship 
that produces even greater nodulation and root growth.  
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