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Heavy metals (HMS) contamination in soil is a major issue that significantly impacts plants 
and human health. Various approaches have been employed to mitigate the effects of 
heavy metals, including the application of microorganisms (MO). This study aims to analyze 
the impact of bioinoculation application on HMS content in plants and soil through a meta-
analysis approach. Twenty-nine publications reviewed between 2001 and 2023 reported 
the effects of microorganism applications on HMS content in plants and soil. A systematic 
review was applied to select relevant studies, and effect sizes (ES) were calculated using 
Hedges’d to quantify the impact of microbial treatments on heavy metal content. The 
parameters observed were As, Hg, Cd, Cr, Ni, Co, Pb, Ni, Mn, Zn, and Fe in plants (shoots, 
roots, fruit, and total plants), soil, and plant biomass. The ES values of Hedges’ 
microorganisms HMS on soil, plants, and plant biomass were -3.257 (p<0.001), 1.234 
(p<0.001), and 2.301 (p<0.001), respectively. The results showed that the greatest 
reduction in HMS content in the soil was the combined application of fungi and bacteria 
(ES -5.519; p<0.001), and the highest metal content absorbed by the soil and plants was Cu 
(ES -13.642; p<0.001) and Pb (2.645; p<0.001), respectively. This study showed that 
Orychophragmus violaceus had the highest metal absorption rate (ES 15.528, p<0.001) to 
help clean up heavy metal contamination, especially in agricultural land and industrial 
areas. This approach can improve soil quality, enhance plant growth, and reduce health 
risks, which benefits farmers, policymakers, and environmental agencies. 
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1. INTRODUCTION 
Modern industrialization, mining activities, agricultural 

practices, and waste management contribute to heavy metals 
(HMS) pollution (Sarma et al., 2024). Industrial and mining 
activities are the main sources of heavy metal pollution, such 
as lead, cadmium, mercury, and arsenic. Waste and emissions 
from metal plating processes, chemical synthesis, oil refining, 
and mining operations significantly pollute the air, water, and 
soil. Studies show that human activities contribute up to 80% 
of the risk of heavy metal contamination in the environment 
(Ali et al., 2021; Bargah, 2024; Mishra & De, 2024; Wen et al., 
2025). Heavy metal pollution refers to the accumulation of 

toxic metals such as cadmium (Cd), mercury (Hg), copper (Cu), 
arsenic (As), lead (Pb), chromium (Cr), nickel (Ni), and zinc (Zn) 
in the environment, including soil and plants. This 
contamination can pose serious risks to human health and the 
environment (Li et al., 2019). Many countries are affected by 
heavy metal pollution in their soil, water, and ecosystems 
(Escobar-Mamani et al., 2023; Lubal, 2024; Wang et al., 2022). 
This is particularly concerning in many countries worldwide, 
especially in developing nations with numerous industrial 
hubs. Food crops contaminated with high levels of heavy 
metals can lead to various health issues, including 
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neurological, kidney, and developmental issues (Rai et al., 
2019). Moreover, contaminated soil can hinder plant growth, 
disrupt ecosystems, and contaminate groundwater (Timothy 
& Williams, 2019).  

It is important to note that heavy metal toxicity is dose-
dependent, meaning that the risk of harm increases with 
higher levels of exposure (Diaconu et al., 2020). A UN-ECE 
Protocol on heavy metals atmospheric emission control was 
signed in 1998 (Mocanu et al., 2006). However, regulations in 
many countries may have set different guidelines and limits. 
Precautions should be taken to reduce heavy metal pollution 
and deliberately adopt good agricultural practices to contain 
the risk (Afonne & Ifediba, 2020). Various studies have 
adopted a remediation approach using chemical, physical, 
and biological methods to technically address the problem of 
metal pollution in soil and the environment. However, the 
biological approach is an attractive method compared to 
physico-chemical and chemical processes in eliminating the 
toxicity of heavy metals (Zheng et al., 2024). The use of 
biological agents in remediating contaminated soil and 
environments is commonly known as bioremediation 
techniques. This technique uses microorganisms, such as 
bacteria and fungi, which play an essential role in breaking 
down or changing various pollutants, including organic 
compounds and heavy metals (Olusegun et al., 2024). 
Bioremediation is a sustainable and cost-effective approach 
that can be applied to soil and water environments (Zhang et 
al., 2020). Bioremediation is defined as the use of living 
organisms, particularly microbes, to degrade, detoxify, or 
transform environmental contaminants into less harmful 
forms (Kuppan et al., 2024; Patel et al., 2020). 
Phytoremediation, on the other hand, refers specifically to 
the use of green plants and their associated microbes to 
extract, stabilize, or degrade pollutants from soil and water 
environments (Iqbal et al., 2019; Pasricha et al., 2021; Yadav 
et al., 2018). While phytoremediation is considered a subset 
of bioremediation, the two terms are often used 
interchangeably in the context of sustainable remediation 
approaches.  

One form of practical and efficient bioremediation 
technique is to use plant media, commonly called 
phytoremediation. Phytoremediation, which relies on 
phytoextraction with biological organisms, is an essential 
alternative to expensive physical and chemical methods for 
treating contaminated soil (Davies et al., 2001). Fungi and/or 
bacteria can efficiently work synergistically with plants in 
phytoremediation. They can enhance plants' uptake and 
accumulation of contaminants, leading to improved removal 
from soil and water. Some report that Arbuscular mycorrhiza 
(AM) fungi can colonize hyperaccumulators and increase the 
uptake of heavy metals, e.g., Cu, Zn, Pb, and Cd, in 
hyperaccumulator Elsholtzia splendens, Canavalia ensiformis 
(Andrade et al., 2010; Wang et al., 2007) and As-
hyperaccumulator Zea mays L. (Bai et al., 2008), which 
demonstrated the potential use of mycorrhizae 
hyperaccumulators in phytoextraction. However, some 
studies use bacteria such as Rhizobium, Azotobacter, Bacillus 
subtilis, B. cereus, B. megaterium, Pseudomonas aeruginosa, 
and Pseudomonas koreensis as biological agents. Plants 

associated with these bacteria include Chrysopogon 
zizanioides, Orychophragmus violaceus, and Miscanthus 
sinensis (Babu et al., 2015; Liang et al., 2014; Lu et al., 2023). 
These bacteria can also be symbiotic with plants to increase 
the process of heavy metal extraction or as a nitrogen fixer 
needed by plants, thereby increasing the accumulation of 
heavy metals. Rhizobium symbiosis with Alfalfa legumes has 
been shown to reduce stress in the presence of Cu (Duan et 
al., 2019), Bacillus subtilis was applied to rice plants (Oryza 
Sativa) and increased the detoxification of arsenic (As) (Ullah 
et al., 2024), Bacillus cereus showed strong plant growth-
promoting properties along with high Cd resistance in Pigeon 
pea plants (Gao et al., 2025), Bacillus megaterium inoculation 
has been shown to increase biomass and Cd concentration in 
roots and shoots of Arachis hypogaea L. compared to controls 
(without inoculation) (Xiong et al., 2024), Pseudomonas 
aeruginosa bacteria have been shown to increase the 
phytoremediation ability of Jatropha gossypifolia in soil 
contaminated with metals (Al, Pb, Zn, and Cd) by increasing 
nitrogen fixation and phosphate solubilization (Chi et al., 
2023), and inoculation of Pseudomonas koreensis in 
Manzanita plants has been shown to increase the 
phytoremediation process against heavy metals (As, Cd, Cu, 
Pb, and Zn) in soil more than threefold (Zhu et al., 2023). 

The success of the remediation process depends on 
various factors such as microbial activity, environmental 
conditions, contaminant concentrations, and the availability 
of nutrients and electron acceptors (Chang et al., 2018; 
Chaturvedi et al., 2018; Chhimwal & Srivastava, 2023; Ullah et 
al., 2019). Microorganisms can be applied as bioremediation 
tools in various ways, either individually or in combination 
with bacteria and/or fungi. Determining the application to be 
used, both the type of microbe and the method, will 
undoubtedly impact the efficiency and final result of the 
remediation process, in the hope that it will not cause 
additional consequences. This improvement is facilitated 
through mechanisms such as nutrient cycling, hormone 
production, and stress tolerance enhancement, which have 
been widely reported in recent studies (Guzmán-Moreno et 
al., 2022; Han et al., 2021; Tang et al., 2024). A recent meta-
analysis paper examining the efficacy of arbuscular 
mycorrhizal fungi (AMF) in remediating toxic heavy metals in 
mine-impacted soils highlights their role alongside various 
plant species in reducing heavy metal stress and enhancing 
plant growth (Banerjee et al., 2025). Although using 
microorganisms for phytoremediation has been widely 
proven to improve polluted land in field studies, many studies 
have used different criteria in collecting data under various 
conditions in the last five years. Therefore, as an extension of 
the previous work, a comprehensive meta-analysis was 
conducted to study how microorganisms help in 
phytoremediation. To understand their effect on cleaning 
polluted soil, the data were analyzed using meta-analysis, 
which helps combine results from different studies clearly 
and reliably (Rosenberg, 2013). It was expected that (i) heavy 
metal levels in the soil would go down as plants absorb more 
and grow better because of their interaction with 
microorganisms, and (ii) this effect would depend on the type 
of microbes, the plant used, and how the microbes were 
applied (single or mixed strains). 
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In our study to investigate the effect of the 
microorganisms involved in the bioremediation activity of 
polluted soils, we synthesized the data using meta-analysis, 
which is useful when integrating a wide range of data and 
provides a systematic and statistically rigorous way to 
compare studies with methodological and experimental 
differences (Rosenberg, 2013). This study aims to identify and 
quantify the effects of interactions between plants, soil, and 
microorganisms on the reduction of heavy metal (HM) 
content in soil through HM accumulation and biomass in 
plants. In addition, this study aims to examine the role of 
moderator factors, including types of microorganisms, types 
of plants, and microbial management methods (single or 
multistrain applications), in determining the effectiveness of 
microorganisms on the HM absorption process and plant 
growth in the context of phytoremediation. We hypothesized 
that (i) the soil HMs content would decrease as crop HMs 
uptake and biomass increase caused by the interaction 
between plants, soil, and microorganisms; (ii) the type of 
microbes, plant type, and management methods, such as 
single or multistrain application will influence the effect of 
microorganisms on HMs uptake and crop growth. 

2. MATERIAL AND METHODS 
2.1. Data collection 

We conducted an exhaustive search for previously 
published articles in June 2022 using the Scopus database 
(https://www.scopus.com). Keywords used for literature 
research are as follows: bacteria, fungi, immobilization, 
phytoremediation, heavy metals, and soil. The following 
criteria were applied to select suitable studies. First, articles 
must have a microorganism application as treatment with 
non-microorganisms as the control in pairs. Second, the 
activity of at least one microorganism in reducing the amount 
of heavy metals in the soil must be measured. Third, 
experiments were carried out in the field. Fourth, the papers 
included are between 2000 and 2023. We identified 29 
articles from 2000 to 2023 (Fig. 1), in which 165 observations 
from 13 countries were included (Fig. 2), that met these 
criteria (Fig. 1 & Table 1). We extracted each study’s mean, 
standard deviation, and number of replications from the 
target variables. Parameters observed were HMs content (As, 
Hg, Cd, Cr, Ni, Co, Pb, Mn, Zn, and Fe) in plants (shoots, roots, 
fruits, and total plant), HMs content in soil, and plant 
biomass.  

 

 
Figure 1. Diagram of literature search based on PRISMA protocols 

https://www.scopus.com/
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Figure 2. Distribution of paired studies from 29 journal articles selected 

 

2.2. Data categorization and treatment  
For each diversity index that showed significant results, 

mean effect sizes were also analyzed when statistics were 
grouped into other categories. In the subgroup meta-analysis, 
microorganisms were categorized based on the microbial 
groups: bacteria, fungi, fungi+bacteria, and archaea. 
Microbial applications were grouped into single culture and 
mixed culture. Plant species were categorized into eighteen 
types: Helianthus annuus, Elsholtzia splendens, Canavalia 
ensiformis L., Orychophragmus violaceus, Miscanthus sinensis, 
Solanum nigrum, Zea mays L., Solanum melongena, 
Metrosideros laurifolia, Hordeum vulgare L., Brassica juncea, 
Pinus massoniana, Arizona cypress, Glycine max L., Brassica 
rapa, Typha latifolia, Triticum aestivum L., and Triticum spp. 
Meanwhile, microbial species/genera were categorized into 
Glomus intraradices, Glomus caledonium, Glomus spp., 
Acaulospora spp., Glomus, Gigaspora, Azotobacter, 
Rhizobium spp., Pisolithus tinctorius, Entrophospora 
colombiana, Glomus clarum, Glomus etunicatum, Glomus 
intraradices, Bacillus licheniformis, Bacillus megaterium, 
Bacillus polymyxa, Bacillus subtilis, Bacillus thuringiensis, 
Paenibacillus azotofixans, Claroideoglomus etunicatum; 
Acaulospora rugosa, Actinobacteria, Firmicutes, 
Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, 
Chloroflexi, Firmicutes, Gemmatimonadetes spp., 
Proteobacteria spp., Suillus luteus, Trichoderma harzianum L., 
Bacillus subtilis L., Trichoderma harzianum L., Comamonas 
testosterone, Mycoriza, Bacillus spp., Bacillus cereus, 
Rhizophagus intraradices. 

 

2.3. Data computation and numerical analyses 
For each standard pairwise comparison (control and 

microorganism treatment), Hedges’ (Hedges et al., 1999; 
Hedges & Olkin, 1985) standard mean differences were 
calculated between the control and microorganism-treated 
groups to determine the metric effect size. The mean effect 

size for each grouping and the 95% bootstrap confidence 
interval (CI) were calculated using OpenMee software 
(version build date: 26-07-2016) (Wallace et al., 2017). The 
mean effect size was considered significantly different from 
zero if its 95% confidence intervals (CIs) did not include zero 
(Koricheva et al., 2013). We assessed the potential for 
publication bias in the entire database using the “trim and fill” 
method (Jennions et al., 2013). To assess the robustness of 
the overall observed effects of microbial inoculation on HMS 
content in soil, HMS in plants, and plant biomass, the fail-safe 
number (Nfs) was calculated using Rosenberg's weighted 
method (α = 0.05) (Rosenberg, 2005). Nfs Rosenberg shows 
how much research reporting an effect size of zero needs to 
be added to the meta-analysis to make the observed effect 
not significantly different from zero (Rosenberg, 2005). If Nfs > 
5 × n + 10, the result is considered robust, although there may 
still be a possibility of publication bias (Jennions et al., 2013). 

 

3. RESULTS  
3.1. The overall effect of microorganism inoculation on 

heavy metal content 
The addition of microorganisms as biological agents to the 

parameters of heavy metal content in soil and plants is 
described in Figure 3 and Table 2. Our analysis based on 
Figure 3 and Table 2 revealed that the application of 
microorganisms to contaminated soil can reduce its heavy 
metal content with a negative effect size of -3.257 and 
p<0.001 (n=145; Nfs=9192). The effect of microorganisms in 
polluted soil on HMS content in plants shows that the effect 
size is on the right, with a value of 1.234 and p<0.001 (n=211; 
Nfs=2448). The meta-analysis results also showed that 
inoculation of microorganisms on polluted soil positively 
affected plant biomass, as indicated by an effect size of 2.301 
and p<0.001 (n=60; Nfs=1792). Based on this, the parameters 
of HMS content in soil, plants, and plant biomass continued 
to be tested with a moderator variable. 
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Table 1: Experiments were included in the meta‑analysis of the effect of microorganism inoculation on heavy metal content in 
polluted soil and plants 

Study 
no. 

Reference 
Microbes as 
treatment 

Inoculation 
applications 

Plant accumulator Metals 

1 Davies et al. (2001) Fungi Single culture Helianthus annuus Cr 
2 Wang et al. (2007) Fungi Mix culture Elsholtzia splendens Cu, Zn, Pb, and Cd 
3 Bai et al. (2008) Fungi Single and 

mixed culture 
Zea mays L. 

 
As 

4 Juwarkar and 
Jambhulkar (2008) 

Fungi and 
Bacteria 

Mix culture Azadiracta indica, Cassia 
Saemea, Syzygiumcumini, 
Artocarpus heterophyllus, 
Emblica officinalis, Tectona 
grandis, Delonix regia, 
Dendrocalamus strictus, 
Delbergia sissoo, Acacia nilotica, 
Mangifera indica, Pongamia 
pinnata 

Cr, Zn, Cu, Fe, Mn, 
Pb, Ni, Cd 

5 Andrade et al. 
(2010) 

Fungi Single culture Canavalia ensiformis (L.) Mg, Mn, Zn 

6 Liang et al. (2014) Bacteria Single culture Orychophragmus violaceus Cd 
7 Babu et al. (2015) Bacteria Single culture Miscanthus sinensis As, Cd, Cu, Pb, Zn 
8 Khan et al. (2017) Fungi Single culture Solanum nigrum Cd 
9 Guarino and 

Sciarrillo (2017) 
Fungi+Bacteria Mix Culture Acacia saligna, Eucalyptus 

camaldulensis 
As, Cd, Pb, Zn 

10 Kodre et al. (2017) Fungi Single and 
mixed culture 

Zea mays L. Hg 

11 Chang et al. (2018) Fungi Single culture Zea mays L Cd 
12 Chaturvedi et al. 

(2018) 
Fungi Single culture Solanum melongena Pb, Cd, As 

13 Amir et al. (2019) Fungi Mix culture Metrosideros laurifolia Fe, Mn, Co, Ni, Cr 
14 Gorovtsov et al. 

(2019) 
Bacteria Mix culture Hordeum vulgare L. Mn, Zn, Cr, Cu, Pb, 

Ni, Cd 
15 Ullah et al. (2019) Bacteria Single culture Brassica juncea Cd 
16 Wang et al. (2019) Bacteria Mix culture Triticum spp. Pb 
17 Cheng et al. (2020) Bacteria Single culture Triticum spp. Cd, Pb 
18 Yu et al. (2020) Fungi Single culture Pinus massoniana As, Cd, Cu, Cr, Mn, 

Ni, Pb, Zn, Se, Fe 
19 Aalipour et al. 

(2021) 
Fungi  Single and 

mixed culture 
Arizona cypress  Cd 

20 Haider et al. (2021) Fungi Single culture Glycine max L. Cd 
21 Karthik et al. (2021) Bacteria  Single culture Lycopersicon esculentum Cr 
22 Zhou et al. (2021) Bacteria Single culture Brassica rapa Cd 
23 Al-Maliki and Al-

Shamary (2022) 
Fungi, 

Bacteria, 
Fungi+Bacteria 

Single culture 
and mixed 

culture 

Thypa Pb 

24 Han et al. (2022) Bacteria  Single culture Triticum aestivum L. Cd 
25 Ilyas et al. (2022) Bacteria  Single culture Triticum aestivum L. Cd, Cr 
26 Tripathi et al. 

(2022) 
Bacteria  Single culture Bacopa monnieri L. As 

27 Hagagy et al. (2023) Archaea  Single culture Triticum spp. Co, Zn, Mn, Fe, Cu 
28 Lu et al. (2023) Bacteria Single culture Chrysopogon zizanioides Cr, Cd, Pb, Mn 
29 Wang et al. (2023) Fungi  Single culture Glycine max L.;  Solanum 

nigrum 
Cd 

 
Table 2: Summary of the effect size Hedges’d of HMS content and plant biomass. 

Response parameter n 
Effect 
size 

Lower bound Upper bound 
Standard 

Error 
P-value 

HMS content in the soil 145 -3.257 -3.868 -2.645 0.312 < 0.001 
HMS content in plants 211 1.234 0.855 1.614 0.193 < 0.001 
Plant biomass 60 2.301 1.57 3.031 0.373 < 0.001 

Remarks: *Significant changes occurred when the 95% confidence interval of the effect size did not overlap with zero 
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Figure. 3 The effect of microorganism inoculation on heavy 

metals and plant biomass 
 

3.2.  Impacts of moderator variables on HMS content in 
soil and plant after microbial application 

Figure 4 shows that the application of microbes with 
mixed culture to the HMS content in soil showed the highest 
effect size (ES) with a value of -3.5 (p<0.001). However, 
applying a single culture had the highest influence on the 
HMS content in plants, with an ES value of 1.439 (p<0.001) 
(Fig. 4b). Application of bacteria and fungi together as 
treatment can give the highest effect size value in HMS 
content in soil (ES=-5.519, with p<0.001) (Fig. 4c). Bacterial 
application had the highest influence on HMS uptake in plants, 
with an ES value of 4.681 (p<0.001) (Fig. 4d). The HMS content 
in the soil that decreased the most was the Cu content, with 
an ES value of -13.642 (p<0.001) (Fig. 2e). The highest amount 
of HMS uptake in plants is the Pb type, with an ES value of 
2,645 (p<0.001) (Fig. 4f). When Glomus, Gigaspora, 
Azotobacter, and Rhizobium are used as treatments along 
with fungi and bacteria, the HMS level in the soil drops the 
most, with an ES value of -12.41 (p<0.001) (Fig. 4g). 
Meanwhile, Bacillus megantherium bacteria provided the 
highest HMS uptake in plants with an ES value of 29,043 
(p<0.001). 

 

3.3.  Impacts of moderating variables on plant biomass 
after microbial inoculations 

Figure 5 shows that the meta-analysis results with 
Hedges’d show that applying microorganisms to polluted soil 
can increase plant biomass. The application of microbes with 
mixed culture had the highest influence on plant biomass 
with an ES value of 8.206 (p<0.001) (Fig. 5a). The use of mixed 
cultures of fungi and bacteria simultaneously showed the 
most significant influence on plant biomass with an ES of 
8.774 (p<0.001) (Fig. 5b). The highest HMS uptake was 
obtained in the shoot part of the plant with an ES value of 
1.601 (p<0.001). If HMS uptake in plant parts based on ES 
values is sorted, then the sequence becomes total 
plant>shoots>roots>fruit>leaves (Fig. 5c). The use of fungal 
and bacterial treatments like Glomus, Gigaspora, Azotobacter, 
and Rhizobium together led to a rise in plant biomass (ES 
value = 8.774; P<0.001). 

 

4. DISCUSSION 
This meta-analysis study aimed to investigate the impact 

of microbial inoculation on HMS content in soil, HMS content 
in plants, and plant biomass. Apart from influencing these 
three parameters, this meta-analysis study shows that the 
HMS content in the soil, HMS content in plants, and plant 

biomass (Fig. 3) also change according to the culture 
application method, the microbial group used, the type of 
HMS, and the microbe species/genus used (Fig. 4 & Fig. 5). 
The application of microorganisms to polluted soil can also 
increase plant biomass. Cohen’s Benchmark provides rough 
estimates with a mean effect size of d > 0.8, indicating a large 
effect, 0.2 < d < 0.8 a medium effect, and 0 < d < 0.2 a small 
effect (Arft et al., 1999; Fedrowitz et al., 2014). The results of 
the meta-analysis show that the use of microbes has a large 
effect on the HMS content in soil (negative effect) and plants 
(positive effect), as well as on plant biomass (positive effect). 
This big impact can be understood as one illustration of the 
multi-role function of microbes in soil. These results also 
show that the presence and number of microbes with special 
abilities can be increased to solve environmental problems 
such as pollution. The specific capabilities of microbes in the 
soil can be enhanced through a combination of inoculation 
with other functional microbes or with other suitable types of 
organisms, such as plants, thereby improving the process and 
quality of soil bioremediation (Chaudhary & Shukla, 2019; 
Yang et al., 2020). 

Microorganisms have been widely used as biological 
agents to help reduce soil contamination by HMS. The 
addition of microorganisms can undoubtedly improve the 
physicochemical properties of soil and support plant growth, 
thus significantly affecting phytoremediation methods (Iqbal 
et al., 2019; Nedjimi, 2021; Sarma et al., 2024). Therefore, 
these factors directly influence our methodological approach, 
especially in terms of the selection of the type of 
microorganisms, the application dose, and the soil and plant 
parameters observed. Microorganisms provide nutrients and 
growth hormones to phytoremediator plants through their 
ability to cycle soil nutrients, secrete growth hormones, 
produce organic acids, buffer soil pH, or act as decomposers 
in the soil (Guzmán-Moreno et al., 2022; Han et al., 2021; 
Tang et al., 2024). Some microbes are essential as mediators 
of plant-soil relationships. The functions of microbes in the 
soil are critical for influencing the soil’s biological properties, 
ultimately changing the soil’s properties as a whole. Our 
results show that a combination of microbes plays a 
significant role in HMS reduction in soil (Fig. 4a). We assumed 
that HMS accumulation in plants depends not only on HMS 
levels in the soil but also on microbial interactions within the 
rhizosphere. The application of microorganisms with mixed 
cultures is thought to improve soil health biologically, 
especially in the rhizosphere, by becoming a pioneer in soil 
microbial diversity so that essential soil functions can be 
supported. Mixed cultures are considered to be able to 
provide essential elements in the soil that can be used for the 
growth of other organisms. However, it is likely that microbial 
strains isolated from contaminated soil are more tolerant of 
metals and have developed resistance (Ahemad, 2019). 
Microbes with a high level of environmental tolerance are 
better able to play their role in the nutrient cycle in the soil. 
Mechanisms that can be carried out by microbes, such as the 
secretion of organic acids, growth regulators, chelating 
agents, and soil enzymes, are thought to support plant 
growth so that heavy metal uptake is more effective (Manoj 
et al., 2020).
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Figure. 4 Effect size Hedges’d for the HMS content under different applications in soil (A) and plant (B); microbes group in soil 
(C) and plant (D), HMS type in soil (E) and plant (F), microbes species/genus in soil (G) and plant (H). The effect size was 

significant if the 95% bootstrap confidence interval did not include zero 
 
On the contrary, only certain microbes can associate with 

certain plants. In this meta-analysis study, application with a 
single culture had the highest influence on HMS uptake in 
plants (Fig. 4b). This is thought to be because the role of 
microorganisms in plants is more specific when compared to 
the position of microorganisms in soil (Reynolds et al., 2003). 
This particular role is the association of microbes with plants, 
making HMS absorption more effective. For example, 
arbuscules play an important role in mineral ion exchange in 
root cortical cells, increasing plant tolerance responses, 
chelation of organic material around roots, limiting uptake, 
and direct biosorption by hyphae (Xu et al., 2024).  

Mycorrhiza is known as a type of microbe that can 
colonize the roots of its host plant. Root colonization by 
mycorrhiza can increase nutrient and/or HMS uptake from 
the soil to the plant. Our study found that among the types of 
HMS, the HMS that was most reduced in soil due to the 
application of microbes as a bioremediation agent was Cu (Fig. 
4e). Cu is a micronutrient in the soil that is quite important for 
plants. Copper (Cu) plays an important role in plant 
physiology. Cu is a cofactor for many enzymes involved in 
photosynthesis, respiration, and antioxidant defense systems 
(Chen et al., 2022). However, it is important to remember that 
although copper is necessary for plant growth, excessive Cu 
content can be toxic to plants. Excessive Cu accumulation can 

disrupt cellular processes and cause damage. Factors such as 
soil pH, organic matter content, and the presence of 
competing ions can influence the availability of copper in the 
soil (Hou et al., 2019). Soil pH plays an important role in 
copper availability. Cu tends to be more available to plants in 
slightly acidic to neutral soil (pH 6.0-7.0). The presence of 
organic material in soil will make Cu more available. This is 
due to the role of organic material, which is able to release Cu 
bonds with other compounds and absorb and exchange metal 
ions such as Cu. The decrease in Cu levels in the soil indicates 
that phytoremediation is going well. 

The results of meta-analysis studies show that the highest 
metal uptake in plants is obtained by Pb metal (Fig. 4f). 
Uptake of lead (Pb) by plants can occur when lead in the soil 
dissolves in the form of Pb²⁺ ions and is then absorbed by 
plant roots (Ur Rahman et al., 2024). However, plants usually 
do not absorb lead in significant amounts, except in certain 
conditions where the lead content in the soil is very high or 
certain plant species have a better ability to absorb lead. Lead 
concentration in soil is the main factor influencing plant 
uptake. If the lead content in the soil is very high, there is 
greater potential for plants to absorb lead. Some plant 
species have a better ability to absorb lead than others. Plants 
called “lead accumulators” have more efficient root systems 
and uptake mechanisms for lead (Moogouei & Chen, 2020).  
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This plant is often used in phytoremediation practices to clean 
lead-contaminated soil. Soil conditions such as pH, moisture, 
and texture can influence lead uptake by plants. Soil 
conditions that support microbial activity that reduces lead to 
the form of Pb²⁺ ions can increase uptake by plants (He et al., 
2024). 

Other studies have shown that several types of bacteria 
have been successfully applied to absorb heavy metals in soil 
with several types of plants. Among others, Azospirillum 
brasilense can reduce the content of Cd, Ni, Pb, and Zn in pa 
choi plants (Wu et al., 2025), B. cepacian can reduce the 
toxicity levels of Cd and Pb in tomato plants (Janaki et al., 
2024), and Stutzerimonas stutzeri and Pseudomonas Sundara 
can increase the absorption of heavy metals Cd, Cr, and Pb in 
sunflower plants (Waseem et al., 2024). These findings reveal 
that soil conditions with certain types of plants provide an 
environment that supports certain bacteria in the absorption 
of certain metals. 

Treatment of Glomus, Gigaspora, Azotobacter, and 
Rhizobium together as a mixed culture was able to achieve 
the highest HMS in the soil (Fig. 4g). It is known that 
mycorrhizal fungi (Glomus, Gigaspora) are effective in 
colonizing plant roots, forming an external protective layer 
that enhances nutrient absorption and protects against 
pathogens and soil stress. Meanwhile, Azotobacter is a free-
living bacterium in the rhizosphere, capable of fixing Nitrogen 
(N) and secreting growth hormones. Rhizobium is able to 
create nodules with its host plant and helps fix Nitrogen 
better. These results indicate that the association between 
microbes and suitable host plants is able to increase HMS 
uptake in plant tissues. However, mixed culture showed a 
strong influence on HMS uptake. Microorganisms, such as 
plant growth-promoting rhizobacteria (PGPR) and Arbuscular 
Mycorrhizal fungi (AMF), enhance nutrient uptake and 
promote plant growth, which is vital for phytoremediation 
success (Iqbal et al., 2019). Unfortunately, most 
hyperaccumulating plants frequently accumulate certain 
metals only, which shows limited applicability to locations 
with many mixed contaminants (Pasricha et al., 2021). Meta-
analysis studies show that the treatment of Bacillus 
megatherium bacteria shows an increase in HMS in plant 
tissue. Bacillus megatherium is one of the many bacteria with 
potential bioremediation applications, and its effectiveness 
depends on the specific context and pollutants involved 
(Guzmán-Moreno et al., 2022). The organic acids produced by 
these bacteria are able to break the bonds of HMS with soil 
colloids. Plants easily absorb the breakdown products of HMS. 

The abilities of soil microbes are very diverse, including 
increasing the availability of nutrients in the soil. The 
availability of nutrients in the soil is important in supporting 
plant growth. The results of this meta-analysis study show 
that the application of functional microbes in soil, apart from 
reducing HMS content in soil and increasing HMS uptake in 
plants, can also increase plant biomass. The microbial 
application method with mixed culture had the greatest 
influence on increasing plant biomass (Fig. 5a). This is thought 
to be due to the functional role of each microbe applied to 
support plant growth. Plants need complete essential 
nutrients to grow and develop well. Macro and 

micronutrients must be sufficiently available in the soil. The 
combination of fungi and bacteria together as a mixed culture 
treatment provides the highest influence in increasing plant 
biomass (Fig. 5b). In previous reports, it was shown that the 
combination of mycorrhizae and plant growth-promoting 
rhizobacteria (PGPR) can significantly enhance plant growth 
even under stress conditions. This microbial mixture helps 
regulate nutrient and hormone balance, produces plant 
growth regulators, solubilizes nutrients, and induces 
resistance to pathogens (Nadeem et al., 2014). Other reports 
showing similar effects include the combination of 
Pseudomonas mendocina and arbuscular mycorrhizal (AM) 
fungi in lettuce (Lactuca sativa L. cv. Tafalla) (Kohler et al., 
2008), P. fluorescence and G. mosseae in legumes (Phaseolus 
vulgaris) (Younesi & Moradi, 2014), and Planomicrobium 
chinense strain P1 and Bacillus cereus strain P2 in plants under 
drought stress (Chieb & Gachomo, 2023). Increased plant 
growth is a key indicator for assessing the success of 
phytoremediation efforts. Plants that grow well have good 
roots, which, apart from being able to absorb nutrients, can 
also absorb more HMS. Even though all parts of the plant are 
capable of storing HMS, meta-analysis studies show that 
shoots are the most abundant part of the plant (Fig. 5c). The 
order of plant parts in storing HMS from largest to smallest is 
shoots>root>fruits>leaves. This can be attributed to their 
respective physiological roles and storage capacities. Each 
part makes a different contribution to the overall nutrient 
storage and health of the plant, which is essential for survival 
and reproduction (Harrison & Morris, 2018). 

Meta-analysis studies show that Orychophragmus 
violaceus is the plant that absorbs the most HMS. 
Orychophragmus violaceus is a species of Brassicaceae that is 
widely cultivated in China, especially in winter cover crops in 
northern China, due to its low temperature tolerance and low 
water requirements (Huang et al., 2023). Having the ability to 
survive in soil with minimal water availability, it is thought 
that the strength of this plant lies in its roots (Dutta & Sarma, 
2022; Mair et al., 2022). Plants have a wide distribution of 
roots, and many can absorb nutrients better. A number of 
plant species in the Brassica genus are suitable for use in 
phytoremediation because they can withstand the harmful 
effects of heavy metals (Kaur et al., 2017). Brassica species 
possess the capacity to engage in the phytoremediation of 
heavy metals (HMs) through various physiological processes, 
including phytovolatilization (Kumari et al., 2020), 
phytostabilization (Yadav et al., 2018), and phytoextraction 
(Sarwar et al., 2017). We assume Orychophragmus violaceus 
roots adapt to the pressure of high HMS concentrations by 
transporting more HMS from roots to shoots so that the 
concentration of HMS in the rhizosphere is reduced. These 
results may be in line with the research of Xing et al. (2022), 
which reported that the Orychophragmus violaceus plant has 
a high level of adaptation. When plant roots are able to grow 
well in soil contaminated with HMS, the exposure of HMS to 
microbes in the soil is reduced. This produces a good 
environment for microbes to carry out their functions so that 
plants are able to absorb essential elements resulting from 
the work of microbes. Plants have developed tolerance 
mechanisms for excess metal concentration, including metal 
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efflux, reduced metal uptake by root immobilization or 
mycorrhizal action, intracellular chelation by metal 
complexes with phytochelatin (PC), metallothionein, or other 
organic molecules such as amino acids or organic acids, and 
compartmentalization within the vacuole (Thakur et al., 
2022). 

The results of the meta-analysis showed that the joint 
application of Glomus, Gigaspora, Azotobacter, and 
Rhizobium together as a mixed culture showed the highest 
impact on plant biomass. The biological interactions between 
plant growth-promoting rhizobacteria (PGPR) and 
mycorrhizal fungi are believed to cause this cumulative effect 
on all components of the rhizosphere. These interactions are 
also influenced by environmental factors such as soil type, 
nutrient availability, humidity, and temperature (Shah et al., 
2021). Glomus and Gigaspora fungi are known mycorrhizal 
fungi that can colonize plant roots, and their presence in the 
soil has been widely reported to improve nutrient uptake, 
plant growth, and crop yields (Fall et al., 2022). Meanwhile, 
Azotobacter and Rhizobium microbes are functional microbes 
that are known to increase N nutrient uptake in plants. Soils 
contaminated with HMS usually have low nitrogen content in 
addition to low organic C content. Inoculated plants with 
nitrogen-fixing microorganisms will be better because the 
Nitrogen needs for plants are met. This nitrogen fixer also 
releases supporting growth-promoting substances and plant 
growth (Jaiswal et al., 2021). The presence of PGPR and 
mycorrhiza in the rhizosphere is beneficial not only for plant 
growth but also for each other. On the other hand, bacteria 
stimulate hyphae growth by increasing cell permeability, 
thereby facilitating root penetration by fungi, while 
mycorrhiza increases the activity of nitrogen-fixing and 
phosphorus-solubilizing bacteria (Linderman, 1992). Even 
though the data collected in this meta-analysis study is robust, 
there is still the possibility of bias that may occur due to 
unpublished or unreported data. Therefore, it is important to 
look at each piece of data in detail and thoroughly examine it 
in terms of the data recording process and research methods 
used. 

 

5. CONCLUSION 
The results showed that microbial inoculation can reduce 

HMS content in soil, increase HMS in plants, and increase 
plant biomass. Mixed culture is most effective in reducing 
HMS in the soil, while single culture is successful in increasing 
HMS uptake in plants. The mixed culture treatment obtained 
the highest plant biomass. The combination of bacterial fungi 
(Glomus, Gigaspora, Azotobacter, and Rhizobium) together as 
a mixed culture was able to reduce the HMS content in the 
soil. In contrast, the pure culture of B. megatherium was able 
to increase the highest HMS uptake significantly. The order of 
plant parts in storing HMS from largest to smallest is 
shoots>root>fruits>leaves. Orychophragmus violaceus is the 
plant that absorbs the most HMS. However, there are still 
research gaps related to the effectiveness of microbes against 
specific types of heavy metals, the physiological and 
molecular mechanisms underlying the remediation process, 
long-term stability in field conditions, and the risk of 
bioaccumulation in the food chain that need further research. 

To reduce heavy metal pollution, sustainable and 
environmentally friendly practices are essential. This may 
include adopting cleaner production methods in industry, 
reducing inputs containing heavy metals in agriculture, 
proper waste management, soil testing, and remediation, and 
implementing regulations to limit emissions and exposure to 
heavy metals.  
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