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Identifying the start of sowing in rice fallows is challenging due to its typical low land agro-
ecosystem. Tracking the spatio-temporal shifts that take place during the transition from a 
wet to dry ecosystem, identifying crops, assessing their extent, and identifying optimal 
planting periods are vital information for researchers and planners. This study aimed at 
determining the crop sown area and sowing window of maize and sorghum crops planted 
in rice fallows during the Rabi 2020-2021 season in the Krishna Western delta of Guntur 
district, Andhra Pradesh. Optical cloud-free satellite images of Landsat-8 and Sentinel-2 
were downloaded and using band ratios NDVI and NDWI was derived. A Threshold based 
algorithm was developed to detect the crop sowing window. The total area sown was 
determined using the SVM algorithm. The threshold-based algorithm is well-suited for 
identifying the sowing windows. The sowing window in the second fortnight of January had 
the largest area for both crops compared to other sowing windows. The detected sowing 
windows exhibited a deviation of up to two satellite acquisition intervals. The estimated 
area using SVM algorithm for maize and sorghum was 29,518 ha and 65,417 
ha, respectively. The threshold-based algorithm overestimated the maize and sorghum 
crops as compared to SVM. This study established the superior performance of the Support 
Vector Machine (SVM) algorithm for crop classification. Statistical validation confirmed 
that the SVM model achieved significantly higher accuracy in distinguishing both maize and 
sorghum from other land covers compared to the threshold-based algorithm, which 
exhibited a greater tendency for misclassification. 
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1. INTRODUCTION 
The selection of crops for rice fallows was determined by 

a variety of factors, particularly the ability of crops to thrive 
under the unique challenges posed by the agro-ecosystem of 
rice-fallow areas. One of the key challenges in these systems 
is the presence of crop residues, and early ground cover, 
which, while essential for moisture conservation, can also 
impede crop establishment (Kumar et al., 2025). Thus, the 
success of crops in such environments depends on their 
ability to establish effectively despite these residues, and 
their capacity to benefit from moisture conservation, rapid 
growth, and early maturity (Peramaiyan et al., 2023). 
Traditionally, pulses were favoured for cultivation in rice 
fallows due to their suitability in these environments. 

However, in recent years, various biotic stresses, such as 
increased pest and disease pressure, and abiotic factors, such 
as pre-harvest sprouting, have reduced the profitability of 
pulse crops in rice fallows. These issues have been 
compounded by difficulties in crop establishment, often 
exacerbated by high soil moisture and the persistence of crop 
residues, making these systems less viable for farmers 
(Chapke et al., 2017; Chowdhury et al., 2020). As a result, 
farmers have been increasingly shifting toward more robust 
crops such as maize and sorghum. 

Maize, in particular, has gained popularity in the rice-
fallow system, especially in areas where water is available for 
irrigation. This shift towards maize cultivation is driven by 
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several factors that include the ability to efficiently utilize 
residual nutrients left in the rice soil, thereby increasing its 
yield potential (Sarangi, Singh, Srivastava, et al., 2020). 
Additionally, maize has a relatively high tolerance to 
moderate salt stress and low electrical conductivity, making it 
more adaptable to the soil conditions found in rice fallows 
(Sarangi, Singh, Kumar, et al., 2020). This adaptability makes 
maize a viable option for farmers who are seeking to 
maximize yield in suboptimal conditions. Similarly, Sorghum, 
with its low water requirements and ability to tolerate 
terminal moisture stress, has emerged as a preferred crop in 
regions that experience drought-like conditions towards the 
end of the growing season (Liaqat et al., 2024). 

The rise of maize and sorghum in rice fallows during the 
rabi season can also be attributed to their high profitability 
compared to the traditional rice fallow black gram and green 
gram. In regions like Andhra Pradesh, maize and sorghum are 
cultivated extensively during the rabi season, with the Guntur 
district alone accounting for a significant portion of the total 
sown area—23% for maize and 34% for sorghum (Directorate 
of Economics and Statistics, 2020). In this context, the Krishna 
Western delta, located within the Guntur district, plays a 
particularly important role, as it contributes to more than 
85% of the total maize and sorghum cultivation in the district 
during the rabi season. Given the economic importance of 
these crops, understanding the sowing window—the period 
when sowing is optimal for crop growth—is crucial for 
maximizing yields. By identifying the sowing window, farmers 
can optimize their irrigation schedules, nutrient management 
practices, and other critical resources. This also enables 
agricultural planners and policymakers to better support 
farmers through improved advice on crop selection, resource 
management, and yield forecasting. 

The importance of accurately identifying sowing windows 
in rice fallows has led to the use of various remote sensing 
techniques, which offer a more efficient and cost-effective 
alternative to traditional ground-based methods. Vegetation 
indices derived from remote sensing data, such as the 
Normalized Difference Vegetation Index (NDVI) and Land 
Surface Water Index (LSWI), have proven valuable for 
identifying crop sowing periods. For instance, NDVI time 
series have been utilized to track the phenological stages of 
wheat (Zhang et al., 2025), drought monitoring (Suud & 
Kusbianto, 2024), while integrated NDVI and LSWI 
approaches have been employed to pinpoint rice planting 
windows (Gutierrez et al., 2019). Satellite-based vegetation 
indices like NDVI are widely recognized for their effectiveness 
in tracking crop (Olivares Campos et al., 2021), and its 
development and physiological status. By detecting temporal 
variations in canopy reflectance and greenness, these indices 
facilitate the identification of sowing periods and enable 
monitoring of crop growth over time. This approach has 
proven particularly valuable in assessing seasonal cropping 
dynamics across diverse agricultural landscapes (Medida et 
al., 2023; Rolle et al., 2022). Similarly, LSWI has been 
employed to monitor soil moisture and determine the timing 
of sowing in water-dependent crops. In addition to these 
indices, other methods, such as the Modified Bare Soil Index 
(MBSI), have been utilized to distinguish fallow lands from 

actively cropped areas. These methods, along with the use of 
multi-satellite data, enable researchers to better understand 
the dynamics of rice-fallow systems and identify transitions 
between different crop stages, such as from rice-to-rice 
fallow (Chandna & Mondal, 2020; Gu et al., 2022). Such 
transitions are critical to understanding the sowing windows 
for subsequent crops like maize and sorghum. Identifying 
these transitions accurately is essential for timely crop 
management decisions, including determining the best time 
for sowing, irrigation, and fertilization (Naik et al., 2020). 

Beyond crop identification, the ability to estimate crop 
areas reliably is also crucial for agricultural planning. In the 
past, crop area estimation was typically done using ground 
surveys, which are time-consuming and expensive. However, 
remote sensing offers a more practical and scalable approach 
to estimating crop areas over large regions. Studies have 
shown that remote sensing-based crop area estimation is not 
only cost-effective but also provides highly accurate data on 
crop coverage and its changes over time (Gumma et al., 2015; 
Ray & Neetu, 2017). One of the most commonly used 
machine learning algorithms for this purpose is the Support 
Vector Machine (SVM), which has proven to be highly 
effective in classifying complex, multi-dimensional data. The 
SVM algorithm has been successfully applied in remote 
sensing to map crops, estimate crop areas over larger areas 
(Zhong et al., 2019). This algorithm’s ability to handle high-
dimensional datasets and deliver accurate results makes it 
particularly valuable in precision agriculture. 

Given the significant role of maize and sorghum in rice 
fallows, this study seeks to employ geospatial tools, to detect 
sowing windows and estimate the cropped areas for these 
two crops in the Krishna Western delta. This study aims to 
develop a dependable approach for identifying sowing 
periods and estimating crop-sown areas using time-series 
optical satellite data from Landsat-8 and Sentinel-2. While 
many remote-sensing studies rely solely on either threshold-
based techniques or machine-learning models, their 
performance is rarely compared in rice-fallow regions, where 
mixed cropping patterns and frequent cloud cover make crop 
detection difficult. To address this gap, the study evaluates 
both a threshold-based algorithm and a Support Vector 
Machine (SVM) classifier for the same task, allowing a clearer 
understanding of how each method responds to the 
complexities of rice-fallow landscapes. The results aim to 
offer farmers and planners more timely and accurate 
information on sowing activity and crop distribution, 
supporting better decisions related to resource use, 
management, and yield planning. 

 

2. MATERIAL AND METHODS 
2.1. Study area  

The Krishna Western Delta region, located in the Guntur 
district of Andhra Pradesh, India, spans an area of 
approximately 17,626 km2. Geographically, it lies between 
16° 52′ 35″ to 15° 70′ 92″ of northern latitude and 80° 22′ 98″ 
to 80° 90′ 37″ of eastern longitude (Fig. 1). The soils in the 
study area are deltaic alluvial with a moderate to heavy 
texture. Rice is cultivated as the predominant crop during the 
kharif season, while maize and sorghum are largely grown 
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during the rabi season. Additionally, rice fallow pulses such 
as black gram and green gram are cultivated to a lesser 
extent. The rainfall distribution in the study area exhibits a 
bimodal pattern. Of the normal annual rainfall of 889 mm, 
approximately 524.6 mm occurs during the southwest 
monsoon period (June to September), while 231.0 mm is 
received during the post-monsoon period (October to 
December). The remaining 133.4 mm of rainfall is distributed 
over the rest of the year. 

 

2.2. Data collection 
Cloud-free optical data from Landsat-8 and Sentinel-2 

were downloaded from the USGS Earth Explorer database 

(Table 1). The data was harmonized to ensure consistency in 
spatial resolution of 10 m. 

 

2.3. Vegetation indices and sowing window detection 
To monitor seasonal changes and crop dynamics, 

Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Water Index (NDWI) were calculated 
using the harmonised Landsat-8 and sentinel-2 satellite data. 
The NDVI used to track the end of the rice crop season, the 
transition from aquatic conditions to dry soil, and the start of 
the maize and sorghum cropping season and NDWI was used 
to assess soil condition transformations and shifting water 
dynamics. 

 

 
Figure 1. Study area 

 
Table 1. Cloud free optical satellite data used in the study 

S. No Satellite data used Date of acquisition Satellite data used Date of acquisition 

1 Landsat 08 27-10-2020 Sentinel 2A 01-11-2020 
2 Landsat 08 14-12-2020 Sentinel 2A 21-11-2020 
3 Landsat 08 16-02-2021 Sentinel 2B 06-12-2020 
4 Landsat 08 12-03-2021 Sentinel 2B 25-01-2021 
5 Landsat 08 20-03-2021 Sentinel 2B 04-02-2021 
6 Landsat 08 24-04-2021 Sentinel 2A 01-03-2021 
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Figure 2. Logical Algorithm to delineate the sowing window of Maize and sorghum crops 

 
A logical algorithm was developed using temporal NDVI 

and NDWI data to identify the beginning of the cropping 
season, accounting for various field preparation techniques. 
After rice harvest, farmers plant maize and sorghum, either 
through traditional land preparation or zero tillage methods. 
In the developed threhold based algorithm (Fig. 2), is 
grounded in analyzing the distinct developmental pattern of 
these crops during the inital stages of crop growth using four 
image acqusations from the assumed sowing date 
(designated NDVI₁ to NDVI₄) to verfy the pixels wehther the 
crop was sown or not. The initial step verifies that sufficient 
vegetation is present at the start (NDVI₁ > 0.2) and that the 
crop is in an active growth phase shortly after (NDVI₂ > NDVI₁). 
Subsequently, the analysis checks that the vegetation cover 
remains established (NDVI₂ > 0.2) before progressing to 
confirm a period of vigorous growth, marked by a further rise 
in the index (NDVI₃ > NDVI₂) exceeding a specific threshold 
(NDVI₃ > 0.25). The final stage seperates the maize and 
sorghum from crops like greengram, pulses and others, where 
the crop must show sustained growth (NDVI₄ > NDVI₃) and 
reach its vegetation density (NDVI₄ > 0.27). A pixel is 
conclusively classified as maize or sorghum, with its sowing 
date tied to the first acquisition, only if it successfully meets 
every one of these criteria. This stringent step-wise filtering 
effectively isolates the target crops from other land cover 
types. To compensate for inconsistent data gaps caused by 

frequent cloud cover in the tropical coastal study area, the 
algorithm incorporates two flexible threshold rules. These 
rules adjust the required NDVI values based on the actual 
time elapsed between satellite passes, ensuring the model 
remains accurate even with irregular image availability. The 
first condition modifies the NDVI threshold for the third 
acquisition (NDVI₃). If the time difference between NDVI₂ and 
NDVI₃ is less than 16 days, the threshold remains at 0.25. 
However, if this interval is between 16 and 30 days due to 
cloud cover, the threshold is increased to 0.27 to 
accommodate expected vegetation development over the 
period. Similarly, the second condition adjusts the threshold 
for the fourth acquisition (NDVI₄). A time difference of less 
than 16 days between NDVI₃ and NDVI₄ retains a threshold of 
0.27. If the interval is between 16 and 30 days, the threshold 
is raised to 0.30, reflecting the continued maturation of the 
crop canopy. 

 

2.4. Cropped area estimation  
The Sentinel-2 satellite data acquired in March 2020 was 

extracted, and 8A, 8, 7, 6, 5, 4, 3, and 2 bands were resampled 
to a 10 m spatial resolution. The resultant bands were custom 
reprojected, mosaicked, and clipped up to the extent of the 
study area. The ground truth observations (Fig 3) of 118 
numbers collected during the field trips on the 45th and 72nd 
days after sowing (DAS).  
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Figure 3. Ground truth observations collected during the crop growth period 

 
The support vector machine (SVM) learning technique 

was used to classify the rater using a training data set in ENVI 
software. The accuracy assessment was conducted using the 
second ground truth observation data, and the kappa index 
was calculated. A post-classification sieving followed by 
masking of non-agricultural areas using a land use map to 
better represent the surroundings. Using the zonal histogram 
technique of QGIS software, crop area was calculated for each 
administrative boundary. 

 

2.5. Accuracy assessment 
The accuracy of the classified satellite imagery was 

evaluated through a systematic accuracy assessment 
procedure. Initially, a set of reference samples, commonly 

known as ground-truth data, was collected from the study 
area. These samples were independently compared with the 
corresponding classified pixels in the imagery. Subsequently, 
an error matrix—also referred to as a confusion matrix was 
constructed, summarizing the agreement between the 
classified results and the reference data across all classes. 
Standard accuracy metrics such as overall accuracy, user’s 
accuracy, producer’s accuracy, and the kappa coefficient 
were computed from this matrix. Overall accuracy represents 
the proportion of correctly classified samples to the total 
number of reference samples, while user’s and producer’s 
accuracies provide class-specific reliability and completeness, 
respectively. The kappa coefficient further quantifies the 
degree of agreement, accounting for the possibility of 
random classification.  

 

 
Figure 4. Sowing windows of maize crop during rabi 2020-2021 cropping season 
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Figure 5. Sowing windows of Sorghum crop during rabi 2020-2021 cropping season 

 

 
Figure 6. Maximum deviation in identifying the sowing window 

 

3. RESULTS  
3.1. Sowing window analysis 

The timing of maize sowing was determined through a 
logical algorithm applied to satellite imagery collected 
between late October 2020 and early March 2021 (Fig. 4). In 
the upland areas of Guntur, Prathipadu, Peda Kakani and 
Mangalagiri mandals where rice was not cultivated as the the 
kharif crop, maize planting was minimal and primarily 
occurred before mid-December of 2020. In contrast, rice 
fallow fields saw maize sown from early December through 
late February, with the highest activity in the latter half of 
January. Certain tail-end command areas—including 
Vatticherukuru, Repalle, Nizampatnam, Bhattiprolu, 
Kollipara, Kolluru, Pedanandipadu, Prattipadu, and 
Duggirala—showed a concentration of sowing during the first 
half of February. 

Threshold-based classification (Fig. 5) indicated that 
sorghum was mostly sown before mid-December in non-rice 

soils, particularly in Guntur, Vatticherukuru, Prattipadu, 
Pedanandipadu, and Pedakakani. In rice fallows, the sowing 
period for sorghum extended from early December to late 
February, peaking in the second half of January. These results 
are consistent with established patterns of crop management 
in similar agro-ecological zones. 

Variation in the detected sowing windows was observed, 
with deviations up to two satellite acquisition intervals (Fig. 
6). This discrepancy was mainly attributed to weed 
emergence during the transition from wet to dry soil 
conditions, though the affected areas were limited. 
Increasing the frequency of satellite observations is expected 
to improve the precision of sowing window detection. The 
algorithm's performance was assessed using the kappa index, 
which reached 0.82, indicating substantial agreement. Early 
January was marked by persistent cloud cover and fog, which 
affected the clarity of optical satellite observations.  
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Figure 7. Spatial distribution of maize and sorghum crops during the rabi 2020-2021 cropping season 

 
Table 2. Mandal-wise comparison of maize and sorghum area estimates derived from SVM and threshold based classification 

algorithms. 

S. No Mandal Name 
SVM algorithm Threshold based algorithm 

Maize Sorghum Maize Sorghum 

1 Amruthalur 802 3080 870 2898 
2 Bapatla 451 1050 490 982 
3 Bhattiprolu 4237 1747 4832 1684 
4 Chebrolu 1074 4421 1250 4528 
5 Cherukupalle 514 875 480 820 
6 Duggirala 1937 5365 2150 5420 
7 Guntur 40 1300 18 1450 
8 Kakumanu 1457 3361 1620 3450 
9 Karlapalem 67 428 85 471 

10 Kollipara 1187 5722 1069 5827 
11 Kollur 2926 3454 2895 3351 
12 Mangalagiri 393 1121 420 1254 
13 Nagaram 841 862 759 782 
14 Nizampatnam 8 400 25 364 
15 Pedakakani 151 1194 142 1494 
16 Pedanandipadu 51 2658 39 2564 
17 Pittalavanipalem 3 443 17 511 
18 Ponnur 4244 4414 4056 4621 
19 Prathipadu 148 1976 168 2341 
20 Repalle 2334 1705 2154 1853 
21 Tadepalle 127 639 132 710 
22 Tenali 1384 5535 1265 5820 
23 Tsundur 2326 4371 2390 4465 
24 Vatticherukuru 399 3744 387 3942 
25 Vemuru 2419 5551 2510 5680 

Total 29518 65417 30223 67282 

 

3.2. Estimation of crop area: 
During the 2020–21 rabi season, the estimated maize 

sown area using SVM algorithm was 29,518 hectares, which 
is below the five-year average of 37,204 hectares (Fig. 7 & 
Table 2). Maize was present across all mandals, with the 

largest areas in Bhattiprolu (4,237 ha), Ponnur (4,244 ha), and 
Kollur (2,926 ha). The smallest maize areas were found in 
Pittalavanipalem (3 ha) and Nizampatnam (8 ha). In tail-end 
canal command areas such as Pittalavanipalem, 
Nizampatnam, and Karlapalem, delayed harvest of the 
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preceding kharif crop and the prevalence of light-textured 
soils contributed to the limited adoption of maize. 

Sorghum covered 65,417 ha (Table 2), significantly 
exceeding the normal area of 25,174 ha, with the highest 
concentrations in Kollipara (5,722 ha), Vemuru (5,551 ha), 
and Duggirala (5,565 ha). Nizampatnam recorded the lowest 
sorghum area at 400 hectares. The support vector machine 
(SVM) algorithm effectively distinguished maize and sorghum 
from other land cover types, achieving kappa indices of 0.91 
and 0.93 (Tables 3 & 4), respectively, which indicates a high 
level of classification accuracy. The difference in crop area 
estimates between the SVM and threshold-based methods 
was approximately 7%, likely due to differences in algorithm 
parameterization. 

 

4. DISCUSSION 
The findings from this research revealed that maize 

sowing predominantly occurred between early December 
and late February, with the peak sowing activity observed in 
late January, particularly in rice fallow areas. In contrast, 
sorghum exhibited a similar sowing window, predominantly 
between early December and late February, with peak 
activity observed in the second half of January. These findings 
align with established crop management patterns in regions 
with comparable agro-ecological conditions (Gumma et al., 
2016; Srivastava et al., 2023). Moreover, the research 
indicated a significant variation in the area cultivated with 
maize and sorghum, with maize cultivation being lower than 
the five-year average, while sorghum cultivation exceeded 
expectations for the 2020–2021 rabi season. 

The sowing windows for both maize and sorghum were 
strongly influenced by the delayed sowing and harvesting of 
kharif rice, which is a major crop in the region. The delay in 
harvesting rice, which is followed by a required period of soil 
drying to prepare the seedbed, creates a bottleneck for 
subsequent crops like maize and sorghum. This delay is 
further exacerbated by low winter temperatures, which slow 
down soil drying, causing a postponement in sowing 
activities. The delayed sowing of maize, particularly in the first 
half of February, is influenced by the risk of terminal moisture 
stress and elevated temperatures during the reproductive 
phase. If sowing occurs too late, maize is more vulnerable to 
environmental stresses such as water shortages and higher 
temperatures, both of which can negatively impact crop yield 
(Bamboriya et al., 2025). Thus, despite the challenges in 
acquiring cloud-free satellite data in early January, the 
phenological evidence from the region suggests that January 
remains the optimal sowing period for maize. This 
observation aligns with previous research, indicating that 
sowing in early January is critical to avoiding yield losses 
caused by environmental stresses (Srivastava et al., 2023). 

In addition to climatic factors, soil conditions played a 
crucial role in determining the sowing windows for maize and 
sorghum. The study found that sorghum sowing was 
concentrated in areas with medium to light-textured soils, 
which are more favorable for early sowing. These soil types 
allow for quicker drying and better seedbed preparation, 
which are key for early sowing. In contrast, heavier soils, 
commonly found in areas with more water retention, were - 

Table 3. Accuracy assessment of the binary maize versus non-
maize classification using SVM algorithm 

Reference 
data 

Maize Others Total 
User's 

accuracy (%) 

Maize 35 2 37 94.6 
Others 2 79 81 97.5 
Total 37 81 118  
Producers’ 
accuracy (%) 

94.6 97.5   

Kappa Coeffcient = 0.91 

 
Table 4. Accuracy assessment of the binary sorghum versus 

non-sorghum classification using SVM algorithm 

Reference data Maize Others Total 
User's 

accuracy (%) 

Maize 42 2 44 95.5 
Others 2 72 74 97.3 
Total 44 74 118  
Producers’ 
accuracy (%) 

95.5 97.3   

Kappa Coeffcient = 0.89 

 
less conducive to timely sowing. Additionally, the study 
observed that farmers in the region tend to delay sowing 
sorghum due to the presence of long-duration kharif paddy 
varieties. The cultivation of these varieties occupies the land 
for a longer period, preventing the timely sowing of sorghum 
and other crops. Furthermore, the prevalence of tail-end 
canal command areas, where water availability can be 
delayed, also contributed to delayed sowing in these regions. 
These tail-end areas are often characterized by delayed rice 
harvests and the presence of lighter soils, both of which 
restrict the adoption of maize and sorghum cultivation in 
those areas. The limited adoption of maize in areas like 
Pittalavanipalem and Nizampatnam, as noted in the study, is 
a direct consequence of these agronomic and soil-related 
challenges. Similar findings have been observed in other 
agricultural studies, which indicate that delayed sowing is 
often linked to soil and water availability issues (Babu & 
Padmalatha, 2023). 

Another important aspect of this study is the estimation 
of crop area, which was significantly influenced by the sowing 
window and the availability of resources. The area of maize 
sown in the 2020–2021 rabi season was found to be 
considerably lower than the five-year average, primarily due 
to the delayed sowing window. The limited sowing time 
results in a shorter growing season, which reduces the total 
area sown with maize. On the other hand, sorghum 
cultivation exceeded the average for the region. The greater 
flexibility of sorghum, particularly in terms of its adaptability 
to a variety of soil conditions and its tolerance to drought, 
explains its broader cultivation in the region. Sorghum is 
known for its ability to thrive under relatively harsh 
conditions, making it a viable option for farmers, especially in 
areas where maize may not perform well due to adverse 
environmental conditions. This finding supports earlier 
studies that emphasize the resilience of sorghum in tropical 
and semi-arid regions (Gao et al., 2021). The higher 
concentration of sorghum in areas such as Kollipara, Vemuru, 
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and Duggirala is indicative of regions where soil and water 
conditions were more favorable for its cultivation. 

The support vector machine (SVM) algorithm, used for 
classification in this study, demonstrated a high degree of 
accuracy in distinguishing maize and sorghum from other land 
cover types. The kappa indices of 0.91 for maize and 0.93 for 
sorghum indicate that the SVM algorithm was highly effective 
in identifying crop areas. These findings confirm the growing 
utility of machine learning techniques, particularly SVM, in 
agricultural remote sensing applications. The slight 
discrepancy (approximately 7%) observed between the SVM 
and threshold-based methods can likely be attributed to the 
differences in parameterization and the inherent 
characteristics of each algorithm. Although the SVM approach 
proved more accurate in crop classification, the threshold-
based method remained a reliable tool for delineating sowing 
windows in smallholder systems, where crops are often 
planted in heterogeneous landscapes. These results 
underscore the value of combining machine learning 
algorithms with more traditional threshold-based methods to 
improve the precision of crop monitoring systems in complex 
agricultural settings. 

When comparing the threshold-based method using 
NDWI and NDVI with the SVM classifier, a variation in the 
estimated sown area across mandals is observed. Such a 
discrepancy is not unexpected, given that these methods are 
based on very different principles. The thresholding approach 
relies on fixed spectral cut-offs, which may struggle to capture 
the full spatial heterogeneity of rice-fallow fields. On the 
other hand, SVM is more flexible and can model non-linear 
and subtle spectral differences, but its accuracy is strongly 
influenced by the quality and representativeness of its 
training data especially in heterogeneous fragmented 
landscapes (Moumni & Lahrouni, 2021). 

Furthermore, real-world factors such as soil moisture 
gradients, uneven residue retention after harvest, and 
staggered sowing dates across mandals can alter the spectral 
response of inter‐sown crops. These differences in phenology 
and ground conditions might lead each method to interpret 
the same area differently. Importantly, the deviation 
between methods falls within a reasonable uncertainty range 
for remote sensing based crop area estimation. Thematic map 
uncertainty is a well-known issue in remote sensing, driven by 
mixed pixels, classifier limitations, and spatial sampling 
(Olofsson et al., 2014). Under these circumstances, both the 
threshold-based and SVM-based estimates can be considered 
complementary and operationally reliable. However, this 
study has some limitations that should be acknowledged. One 
of the primary limitations was the cloud cover in early 
January, which reduced the availability of cloud-free satellite 
imagery. This, in turn, compromised the accuracy of sowing 
window identification for both maize and sorghum during 
that period. While the study utilized a reasonable temporal 
resolution of satellite data, the accuracy of sowing window 
detection could be improved with higher spatial and temporal 
resolution imagery. Furthermore, while ground truth data 
was collected during the 45th and 72nd days after sowing, this 
limited the ability to capture the full range of temporal 
variability in sowing windows across the entire study area. 

More frequent field observations would help improve the 
robustness of the algorithm, allowing for a more detailed 
assessment of sowing patterns. Additionally, the study's 
algorithm, while effective for maize and sorghum, could 
benefit from further validation across different agro-
ecological zones and seasons to determine its generalizability 
and applicability in other regions. Higher-resolution satellite 
imagery and more frequent satellite observations would 
improve the precision of both sowing window detection and 
crop area estimation, as small-scale variations in sowing times 
and crop areas were not fully captured with the available 
data. 

 

5. CONCLUSION 
The present study successfully identified the sowing 

windows for maize and sorghum in the Krishna Western Delta 
using satellite imagery and logical algorithms. The results 
revealed that maize sowing predominantly took place from 
early December to late February, with peak sowing observed 
in late January, especially in rice fallow areas. Sorghum 
sowing followed a similar trend, with peak activity in mid to 
late January. The timing of sowing was significantly influenced 
by factors such as the delayed harvest of kharif rice, the need 
for soil drying, and low winter temperatures, which notably 
affected maize sowing. Sorghum, being more adaptable to 
varying soil conditions, exhibited a more flexible sowing 
window. The application of the SVM algorithm for crop 
classification showed that maize cultivation was below 
average, while sorghum exceeded expected areas. Despite 
challenges like cloud cover and limited temporal resolution of 
ground truth data, this study highlights the potential of 
remote sensing and machine learning techniques to provide 
accurate and timely crop monitoring. The findings offer 
valuable insights for enhancing agricultural management and 
decision-making in similar agro-ecological regions. 
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