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Identifying the start of sowing in rice fallows is challenging due to its typical low land agro-
ecosystem. Tracking the spatio-temporal shifts that take place during the transition from a
wet to dry ecosystem, identifying crops, assessing their extent, and identifying optimal
planting periods are vital information for researchers and planners. This study aimed at
determining the crop sown area and sowing window of maize and sorghum crops planted
in rice fallows during the Rabi 2020-2021 season in the Krishna Western delta of Guntur
district, Andhra Pradesh. Optical cloud-free satellite images of Landsat-8 and Sentinel-2
were downloaded and using band ratios NDVI and NDWI was derived. A Threshold based
algorithm was developed to detect the crop sowing window. The total area sown was
determined using the SVM algorithm. The threshold-based algorithm is well-suited for
identifying the sowing windows. The sowing window in the second fortnight of January had
the largest area for both crops compared to other sowing windows. The detected sowing
windows exhibited a deviation of up to two satellite acquisition intervals. The estimated
area using SVM algorithm for maize and sorghum was 29,518 ha and 65,417
ha, respectively. The threshold-based algorithm overestimated the maize and sorghum
crops as compared to SVM. This study established the superior performance of the Support
Vector Machine (SVM) algorithm for crop classification. Statistical validation confirmed
that the SVM model achieved significantly higher accuracy in distinguishing both maize and
sorghum from other land covers compared to the threshold-based algorithm, which
exhibited a greater tendency for misclassification.
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1. INTRODUCTION

The selection of crops for rice fallows was determined by
a variety of factors, particularly the ability of crops to thrive
under the unique challenges posed by the agro-ecosystem of
rice-fallow areas. One of the key challenges in these systems
is the presence of crop residues, and early ground cover,
which, while essential for moisture conservation, can also
impede crop establishment (Kumar et al., 2025). Thus, the
success of crops in such environments depends on their
ability to establish effectively despite these residues, and
their capacity to benefit from moisture conservation, rapid
growth, and early maturity (Peramaiyan et al.,, 2023).
Traditionally, pulses were favoured for cultivation in rice
fallows due to their suitability in these environments.
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However, in recent years, various biotic stresses, such as
increased pest and disease pressure, and abiotic factors, such
as pre-harvest sprouting, have reduced the profitability of
pulse crops in rice fallows. These issues have been
compounded by difficulties in crop establishment, often
exacerbated by high soil moisture and the persistence of crop
residues, making these systems less viable for farmers
(Chapke et al., 2017; Chowdhury et al., 2020). As a result,
farmers have been increasingly shifting toward more robust
crops such as maize and sorghum.

Maize, in particular, has gained popularity in the rice-
fallow system, especially in areas where water is available for
irrigation. This shift towards maize cultivation is driven by
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several factors that include the ability to efficiently utilize
residual nutrients left in the rice soil, thereby increasing its
yield potential (Sarangi, Singh, Srivastava, et al., 2020).
Additionally, maize has a relatively high tolerance to
moderate salt stress and low electrical conductivity, making it
more adaptable to the soil conditions found in rice fallows
(Sarangi, Singh, Kumar, et al., 2020). This adaptability makes
maize a viable option for farmers who are seeking to
maximize yield in suboptimal conditions. Similarly, Sorghum,
with its low water requirements and ability to tolerate
terminal moisture stress, has emerged as a preferred crop in
regions that experience drought-like conditions towards the
end of the growing season (Liagat et al., 2024).

The rise of maize and sorghum in rice fallows during the
rabi season can also be attributed to their high profitability
compared to the traditional rice fallow black gram and green
gram. In regions like Andhra Pradesh, maize and sorghum are
cultivated extensively during the rabi season, with the Guntur
district alone accounting for a significant portion of the total
sown area—23% for maize and 34% for sorghum (Directorate
of Economics and Statistics, 2020). In this context, the Krishna
Western delta, located within the Guntur district, plays a
particularly important role, as it contributes to more than
85% of the total maize and sorghum cultivation in the district
during the rabi season. Given the economic importance of
these crops, understanding the sowing window—the period
when sowing is optimal for crop growth—is crucial for
maximizing yields. By identifying the sowing window, farmers
can optimize their irrigation schedules, nutrient management
practices, and other critical resources. This also enables
agricultural planners and policymakers to better support
farmers through improved advice on crop selection, resource
management, and yield forecasting.

The importance of accurately identifying sowing windows
in rice fallows has led to the use of various remote sensing
techniques, which offer a more efficient and cost-effective
alternative to traditional ground-based methods. Vegetation
indices derived from remote sensing data, such as the
Normalized Difference Vegetation Index (NDVI) and Land
Surface Water Index (LSWI), have proven valuable for
identifying crop sowing periods. For instance, NDVI time
series have been utilized to track the phenological stages of
wheat (Zhang et al., 2025), drought monitoring (Suud &
Kusbianto, 2024), while integrated NDVI and LSWI
approaches have been employed to pinpoint rice planting
windows (Gutierrez et al., 2019). Satellite-based vegetation
indices like NDVI are widely recognized for their effectiveness
in tracking crop (Olivares Campos et al., 2021), and its
development and physiological status. By detecting temporal
variations in canopy reflectance and greenness, these indices
facilitate the identification of sowing periods and enable
monitoring of crop growth over time. This approach has
proven particularly valuable in assessing seasonal cropping
dynamics across diverse agricultural landscapes (Medida et
al., 2023; Rolle et al., 2022). Similarly, LSWI has been
employed to monitor soil moisture and determine the timing
of sowing in water-dependent crops. In addition to these
indices, other methods, such as the Modified Bare Soil Index
(MBSI), have been utilized to distinguish fallow lands from
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actively cropped areas. These methods, along with the use of
multi-satellite data, enable researchers to better understand
the dynamics of rice-fallow systems and identify transitions
between different crop stages, such as from rice-to-rice
fallow (Chandna & Mondal, 2020; Gu et al., 2022). Such
transitions are critical to understanding the sowing windows
for subsequent crops like maize and sorghum. Identifying
these transitions accurately is essential for timely crop
management decisions, including determining the best time
for sowing, irrigation, and fertilization (Naik et al., 2020).

Beyond crop identification, the ability to estimate crop
areas reliably is also crucial for agricultural planning. In the
past, crop area estimation was typically done using ground
surveys, which are time-consuming and expensive. However,
remote sensing offers a more practical and scalable approach
to estimating crop areas over large regions. Studies have
shown that remote sensing-based crop area estimation is not
only cost-effective but also provides highly accurate data on
crop coverage and its changes over time (Gumma et al., 2015;
Ray & Neetu, 2017). One of the most commonly used
machine learning algorithms for this purpose is the Support
Vector Machine (SVM), which has proven to be highly
effective in classifying complex, multi-dimensional data. The
SVM algorithm has been successfully applied in remote
sensing to map crops, estimate crop areas over larger areas
(Zhong et al., 2019). This algorithm’s ability to handle high-
dimensional datasets and deliver accurate results makes it
particularly valuable in precision agriculture.

Given the significant role of maize and sorghum in rice
fallows, this study seeks to employ geospatial tools, to detect
sowing windows and estimate the cropped areas for these
two crops in the Krishna Western delta. This study aims to
develop a dependable approach for identifying sowing
periods and estimating crop-sown areas using time-series
optical satellite data from Landsat-8 and Sentinel-2. While
many remote-sensing studies rely solely on either threshold-
based techniques or machine-learning models, their
performance is rarely compared in rice-fallow regions, where
mixed cropping patterns and frequent cloud cover make crop
detection difficult. To address this gap, the study evaluates
both a threshold-based algorithm and a Support Vector
Machine (SVM) classifier for the same task, allowing a clearer
understanding of how each method responds to the
complexities of rice-fallow landscapes. The results aim to
offer farmers and planners more timely and accurate
information on sowing activity and crop distribution,
supporting better decisions related to resource use,
management, and yield planning.

2. MATERIAL AND METHODS
2.1. Study area

The Krishna Western Delta region, located in the Guntur
district of Andhra Pradesh, India, spans an area of
approximately 17,626 km?2. Geographically, it lies between
16° 52" 35" to 15° 70’ 92" of northern latitude and 80° 22’ 98"
to 80° 90’ 37" of eastern longitude (Fig. 1). The soils in the
study area are deltaic alluvial with a moderate to heavy
texture. Rice is cultivated as the predominant crop during the
kharif season, while maize and sorghum are largely grown
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during the rabi season. Additionally, rice fallow pulses such
as black gram and green gram are cultivated to a lesser
extent. The rainfall distribution in the study area exhibits a
bimodal pattern. Of the normal annual rainfall of 889 mm,
approximately 524.6 mm occurs during the southwest
monsoon period (June to September), while 231.0 mm is
received during the post-monsoon period (October to
December). The remaining 133.4 mm of rainfall is distributed
over the rest of the year.

2.2. Data collection
Cloud-free optical data from Landsat-8 and Sentinel-2
were downloaded from the USGS Earth Explorer database
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(Table 1). The data was harmonized to ensure consistency in
spatial resolution of 10 m.

2.3. Vegetation indices and sowing window detection

To monitor seasonal changes and crop dynamics,
Normalized Difference Vegetation Index (NDVI) and
Normalized Difference Water Index (NDWI) were calculated
using the harmonised Landsat-8 and sentinel-2 satellite data.
The NDVI used to track the end of the rice crop season, the
transition from aquatic conditions to dry soil, and the start of
the maize and sorghum cropping season and NDW!I was used
to assess soil condition transformations and shifting water
dynamics.
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Figure 1. Study area

Table 1. Cloud free optical satellite data used in the study

S. No Satellite data used Date of acquisition Satellite data used Date of acquisition
1 Landsat 08 27-10-2020 Sentinel 2A 01-11-2020
2 Landsat 08 14-12-2020 Sentinel 2A 21-11-2020
3 Landsat 08 16-02-2021 Sentinel 2B 06-12-2020
4 Landsat 08 12-03-2021 Sentinel 2B 25-01-2021
5 Landsat 08 20-03-2021 Sentinel 2B 04-02-2021
6 Landsat 08 24-04-2021 Sentinel 2A 01-03-2021
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Figure 2. Logical Algorithm to delineate the sowing window of Maize and sorghum crops

A logical algorithm was developed using temporal NDVI
and NDWI data to identify the beginning of the cropping
season, accounting for various field preparation techniques.
After rice harvest, farmers plant maize and sorghum, either
through traditional land preparation or zero tillage methods.
In the developed threhold based algorithm (Fig. 2), is
grounded in analyzing the distinct developmental pattern of
these crops during the inital stages of crop growth using four
image acqusations from the assumed sowing date
(designated NDVI; to NDVI,4) to verfy the pixels wehther the
crop was sown or not. The initial step verifies that sufficient
vegetation is present at the start (NDVI; > 0.2) and that the
cropisin an active growth phase shortly after (NDVI, > NDVI,).
Subsequently, the analysis checks that the vegetation cover
remains established (NDVI, > 0.2) before progressing to
confirm a period of vigorous growth, marked by a further rise
in the index (NDVI; > NDVI,) exceeding a specific threshold
(NDVI3 > 0.25). The final stage seperates the maize and
sorghum from crops like greengram, pulses and others, where
the crop must show sustained growth (NDVI; > NDVIs) and
reach its vegetation density (NDVI, > 0.27). A pixel is
conclusively classified as maize or sorghum, with its sowing
date tied to the first acquisition, only if it successfully meets
every one of these criteria. This stringent step-wise filtering
effectively isolates the target crops from other land cover
types. To compensate for inconsistent data gaps caused by
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frequent cloud cover in the tropical coastal study area, the
algorithm incorporates two flexible threshold rules. These
rules adjust the required NDVI values based on the actual
time elapsed between satellite passes, ensuring the model
remains accurate even with irregular image availability. The
first condition modifies the NDVI threshold for the third
acquisition (NDVIs3). If the time difference between NDVI, and
NDVI; is less than 16 days, the threshold remains at 0.25.
However, if this interval is between 16 and 30 days due to
cloud cover, the threshold is increased to 0.27 to
accommodate expected vegetation development over the
period. Similarly, the second condition adjusts the threshold
for the fourth acquisition (NDVI,). A time difference of less
than 16 days between NDVI; and NDVI, retains a threshold of
0.27. If the interval is between 16 and 30 days, the threshold
is raised to 0.30, reflecting the continued maturation of the
crop canopy.

2.4. Cropped area estimation

The Sentinel-2 satellite data acquired in March 2020 was
extracted, and 8A, 8,7, 6, 5, 4, 3, and 2 bands were resampled
to a 10 m spatial resolution. The resultant bands were custom
reprojected, mosaicked, and clipped up to the extent of the
study area. The ground truth observations (Fig 3) of 118
numbers collected during the field trips on the 45" and 72"
days after sowing (DAS).
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Figure 3. Ground truth observations collected during the crop growth period

The support vector machine (SVM) learning technique
was used to classify the rater using a training data set in ENVI
software. The accuracy assessment was conducted using the
second ground truth observation data, and the kappa index
was calculated. A post-classification sieving followed by
masking of non-agricultural areas using a land use map to
better represent the surroundings. Using the zonal histogram
technique of QGIS software, crop area was calculated for each
administrative boundary.

2.5. Accuracy assessment

The accuracy of the classified satellite imagery was
evaluated through a systematic accuracy assessment
procedure. Initially, a set of reference samples, commonly

Start of Season R 3
[] Administrative Boundaries ~
27-10-2020 [
N 01-11-2020
N 21-11-2020
06-12-2020
B 14-12-2020
N 25-01-2021
04-02-2021
N 16-02-2021
N 01-03-2021

known as ground-truth data, was collected from the study
area. These samples were independently compared with the
corresponding classified pixels in the imagery. Subsequently,
an error matrix—also referred to as a confusion matrix was
constructed, summarizing the agreement between the
classified results and the reference data across all classes.
Standard accuracy metrics such as overall accuracy, user’s
accuracy, producer’s accuracy, and the kappa coefficient
were computed from this matrix. Overall accuracy represents
the proportion of correctly classified samples to the total
number of reference samples, while user’s and producer’s
accuracies provide class-specific reliability and completeness,
respectively. The kappa coefficient further quantifies the
degree of agreement, accounting for the possibility of
random classification.

Figure 4. Sowing windows of maize crop during rabi 2020-2021 cropping season
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Figure 5. Sowing windows of Sorghum crop during rabi 2020-2021 cropping season
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Figure 6. Maximum deviation in identifying the sowing window

3. RESULTS
3.1. Sowing window analysis

The timing of maize sowing was determined through a
logical algorithm applied to satellite imagery collected
between late October 2020 and early March 2021 (Fig. 4). In
the upland areas of Guntur, Prathipadu, Peda Kakani and
Mangalagiri mandals where rice was not cultivated as the the
kharif crop, maize planting was minimal and primarily
occurred before mid-December of 2020. In contrast, rice
fallow fields saw maize sown from early December through
late February, with the highest activity in the latter half of

January. Certain tail-end command areas—including
Vatticherukuru, Repalle, Nizampatnam, Bhattiprolu,
Kollipara, Kolluru, Pedanandipadu, Prattipadu, and

Duggirala—showed a concentration of sowing during the first
half of February.

Threshold-based classification (Fig. 5) indicated that
sorghum was mostly sown before mid-December in non-rice
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soils, particularly in Guntur, Vatticherukuru, Prattipadu,
Pedanandipadu, and Pedakakani. In rice fallows, the sowing
period for sorghum extended from early December to late
February, peaking in the second half of January. These results
are consistent with established patterns of crop management
in similar agro-ecological zones.

Variation in the detected sowing windows was observed,
with deviations up to two satellite acquisition intervals (Fig.
6). This discrepancy was mainly attributed to weed
emergence during the transition from wet to dry soail
conditions, though the affected areas were limited.
Increasing the frequency of satellite observations is expected
to improve the precision of sowing window detection. The
algorithm's performance was assessed using the kappa index,
which reached 0.82, indicating substantial agreement. Early
January was marked by persistent cloud cover and fog, which
affected the clarity of optical satellite observations.
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Figure 7. Spatial distribution of maize and sorghum crops during the rabi 2020-2021 cropping season

Table 2. Mandal-wise comparison of maize and sorghum area estimates derived from SVM and threshold based classification

algorithms.
S No Mandal Name SVM algorithm Threshold based algorithm
Maize Sorghum Maize Sorghum
1 Amruthalur 802 3080 870 2898
2 Bapatla 451 1050 490 982
3 Bhattiprolu 4237 1747 4832 1684
4 Chebrolu 1074 4421 1250 4528
5 Cherukupalle 514 875 480 820
6 Duggirala 1937 5365 2150 5420
7 Guntur 40 1300 18 1450
8 Kakumanu 1457 3361 1620 3450
9 Karlapalem 67 428 85 471
10 Kollipara 1187 5722 1069 5827
11 Kollur 2926 3454 2895 3351
12 Mangalagiri 393 1121 420 1254
13 Nagaram 841 862 759 782
14 Nizampatnam 8 400 25 364
15 Pedakakani 151 1194 142 1494
16 Pedanandipadu 51 2658 39 2564
17 Pittalavanipalem 3 443 17 511
18 Ponnur 4244 4414 4056 4621
19 Prathipadu 148 1976 168 2341
20 Repalle 2334 1705 2154 1853
21 Tadepalle 127 639 132 710
22 Tenali 1384 5535 1265 5820
23 Tsundur 2326 4371 2390 4465
24 Vatticherukuru 399 3744 387 3942
25 Vemuru 2419 5551 2510 5680
Total 29518 65417 30223 67282

3.2. Estimation of crop area:

During the 2020-21 rabi season, the estimated maize
sown area using SVM algorithm was 29,518 hectares, which
is below the five-year average of 37,204 hectares (Fig. 7 &
Table 2). Maize was present across all mandals, with the

largest areas in Bhattiprolu (4,237 ha), Ponnur (4,244 ha), and
Kollur (2,926 ha). The smallest maize areas were found in
Pittalavanipalem (3 ha) and Nizampatnam (8 ha). In tail-end
canal command areas such as Pittalavanipalem,
Nizampatnam, and Karlapalem, delayed harvest of the
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preceding kharif crop and the prevalence of light-textured
soils contributed to the limited adoption of maize.

Sorghum covered 65,417 ha (Table 2), significantly
exceeding the normal area of 25,174 ha, with the highest
concentrations in Kollipara (5,722 ha), Vemuru (5,551 ha),
and Duggirala (5,565 ha). Nizampatnam recorded the lowest
sorghum area at 400 hectares. The support vector machine
(SVM) algorithm effectively distinguished maize and sorghum
from other land cover types, achieving kappa indices of 0.91
and 0.93 (Tables 3 & 4), respectively, which indicates a high
level of classification accuracy. The difference in crop area
estimates between the SVM and threshold-based methods
was approximately 7%, likely due to differences in algorithm
parameterization.

4. DISCUSSION

The findings from this research revealed that maize
sowing predominantly occurred between early December
and late February, with the peak sowing activity observed in
late January, particularly in rice fallow areas. In contrast,
sorghum exhibited a similar sowing window, predominantly
between early December and late February, with peak
activity observed in the second half of January. These findings
align with established crop management patterns in regions
with comparable agro-ecological conditions (Gumma et al.,
2016; Srivastava et al., 2023). Moreover, the research
indicated a significant variation in the area cultivated with
maize and sorghum, with maize cultivation being lower than
the five-year average, while sorghum cultivation exceeded
expectations for the 2020-2021 rabi season.

The sowing windows for both maize and sorghum were
strongly influenced by the delayed sowing and harvesting of
kharif rice, which is a major crop in the region. The delay in
harvesting rice, which is followed by a required period of soil
drying to prepare the seedbed, creates a bottleneck for
subsequent crops like maize and sorghum. This delay is
further exacerbated by low winter temperatures, which slow
down soil drying, causing a postponement in sowing
activities. The delayed sowing of maize, particularly in the first
half of February, is influenced by the risk of terminal moisture
stress and elevated temperatures during the reproductive
phase. If sowing occurs too late, maize is more vulnerable to
environmental stresses such as water shortages and higher
temperatures, both of which can negatively impact crop yield
(Bamboriya et al., 2025). Thus, despite the challenges in
acquiring cloud-free satellite data in early January, the
phenological evidence from the region suggests that January
remains the optimal sowing period for maize. This
observation aligns with previous research, indicating that
sowing in early January is critical to avoiding yield losses
caused by environmental stresses (Srivastava et al., 2023).

In addition to climatic factors, soil conditions played a
crucial role in determining the sowing windows for maize and
sorghum. The study found that sorghum sowing was
concentrated in areas with medium to light-textured soils,
which are more favorable for early sowing. These soil types
allow for quicker drying and better seedbed preparation,
which are key for early sowing. In contrast, heavier soils,
commonly found in areas with more water retention, were -
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Table 3. Accuracy assessment of the binary maize versus non-
maize classification using SVM algorithm

Ref:arf:ce Maize Others Total accl:r?:crys (%)
Maize 35 2 37 94.6
Others 2 79 81 97.5
Total 37 81 118
Producers’ 94.6 97.5

accuracy (%)

Kappa Coeffcient = 0.91

Table 4. Accuracy assessment of the binary sorghum versus
non-sorghum classification using SVM algorithm

Reference data Maize Others Total User's
accuracy (%)

Maize 42 2 44 95.5

Others 2 72 74 97.3

Total 44 74 118

Producers 95.5 973

accuracy (%)

Kappa Coeffcient = 0.89
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less conducive to timely sowing. Additionally, the study
observed that farmers in the region tend to delay sowing
sorghum due to the presence of long-duration kharif paddy
varieties. The cultivation of these varieties occupies the land
for a longer period, preventing the timely sowing of sorghum
and other crops. Furthermore, the prevalence of tail-end
canal command areas, where water availability can be
delayed, also contributed to delayed sowing in these regions.
These tail-end areas are often characterized by delayed rice
harvests and the presence of lighter soils, both of which
restrict the adoption of maize and sorghum cultivation in
those areas. The limited adoption of maize in areas like
Pittalavanipalem and Nizampatnam, as noted in the study, is
a direct consequence of these agronomic and soil-related
challenges. Similar findings have been observed in other
agricultural studies, which indicate that delayed sowing is
often linked to soil and water availability issues (Babu &
Padmalatha, 2023).

Another important aspect of this study is the estimation
of crop area, which was significantly influenced by the sowing
window and the availability of resources. The area of maize
sown in the 2020-2021 rabi season was found to be
considerably lower than the five-year average, primarily due
to the delayed sowing window. The limited sowing time
results in a shorter growing season, which reduces the total
area sown with maize. On the other hand, sorghum
cultivation exceeded the average for the region. The greater
flexibility of sorghum, particularly in terms of its adaptability
to a variety of soil conditions and its tolerance to drought,
explains its broader cultivation in the region. Sorghum is
known for its ability to thrive under relatively harsh
conditions, making it a viable option for farmers, especially in
areas where maize may not perform well due to adverse
environmental conditions. This finding supports earlier
studies that emphasize the resilience of sorghum in tropical
and semi-arid regions (Gao et al.,, 2021). The higher
concentration of sorghum in areas such as Kollipara, Vemuru,
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and Duggirala is indicative of regions where soil and water
conditions were more favorable for its cultivation.

The support vector machine (SVM) algorithm, used for
classification in this study, demonstrated a high degree of
accuracy in distinguishing maize and sorghum from other land
cover types. The kappa indices of 0.91 for maize and 0.93 for
sorghum indicate that the SVM algorithm was highly effective
in identifying crop areas. These findings confirm the growing
utility of machine learning techniques, particularly SVM, in
agricultural remote sensing applications. The slight
discrepancy (approximately 7%) observed between the SVM
and threshold-based methods can likely be attributed to the
differences in parameterization and the inherent
characteristics of each algorithm. Although the SVM approach
proved more accurate in crop classification, the threshold-
based method remained a reliable tool for delineating sowing
windows in smallholder systems, where crops are often
planted in heterogeneous landscapes. These results
underscore the value of combining machine learning
algorithms with more traditional threshold-based methods to
improve the precision of crop monitoring systems in complex
agricultural settings.

When comparing the threshold-based method using
NDW!I and NDVI with the SVM classifier, a variation in the
estimated sown area across mandals is observed. Such a
discrepancy is not unexpected, given that these methods are
based on very different principles. The thresholding approach
relies on fixed spectral cut-offs, which may struggle to capture
the full spatial heterogeneity of rice-fallow fields. On the
other hand, SVM is more flexible and can model non-linear
and subtle spectral differences, but its accuracy is strongly
influenced by the quality and representativeness of its
training data especially in heterogeneous fragmented
landscapes (Moumni & Lahrouni, 2021).

Furthermore, real-world factors such as soil moisture
gradients, uneven residue retention after harvest, and
staggered sowing dates across mandals can alter the spectral
response of inter-sown crops. These differences in phenology
and ground conditions might lead each method to interpret
the same area differently. Importantly, the deviation
between methods falls within a reasonable uncertainty range
for remote sensing based crop area estimation. Thematic map
uncertainty is a well-known issue in remote sensing, driven by
mixed pixels, classifier limitations, and spatial sampling
(Olofsson et al., 2014). Under these circumstances, both the
threshold-based and SVM-based estimates can be considered
complementary and operationally reliable. However, this
study has some limitations that should be acknowledged. One
of the primary limitations was the cloud cover in early
January, which reduced the availability of cloud-free satellite
imagery. This, in turn, compromised the accuracy of sowing
window identification for both maize and sorghum during
that period. While the study utilized a reasonable temporal
resolution of satellite data, the accuracy of sowing window
detection could be improved with higher spatial and temporal
resolution imagery. Furthermore, while ground truth data
was collected during the 45™ and 72" days after sowing, this
limited the ability to capture the full range of temporal
variability in sowing windows across the entire study area.
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More frequent field observations would help improve the
robustness of the algorithm, allowing for a more detailed
assessment of sowing patterns. Additionally, the study's
algorithm, while effective for maize and sorghum, could
benefit from further validation across different agro-
ecological zones and seasons to determine its generalizability
and applicability in other regions. Higher-resolution satellite
imagery and more frequent satellite observations would
improve the precision of both sowing window detection and
crop area estimation, as small-scale variations in sowing times
and crop areas were not fully captured with the available
data.

5. CONCLUSION

The present study successfully identified the sowing
windows for maize and sorghum in the Krishna Western Delta
using satellite imagery and logical algorithms. The results
revealed that maize sowing predominantly took place from
early December to late February, with peak sowing observed
in late January, especially in rice fallow areas. Sorghum
sowing followed a similar trend, with peak activity in mid to
late January. The timing of sowing was significantly influenced
by factors such as the delayed harvest of kharif rice, the need
for soil drying, and low winter temperatures, which notably
affected maize sowing. Sorghum, being more adaptable to
varying soil conditions, exhibited a more flexible sowing
window. The application of the SVM algorithm for crop
classification showed that maize cultivation was below
average, while sorghum exceeded expected areas. Despite
challenges like cloud cover and limited temporal resolution of
ground truth data, this study highlights the potential of
remote sensing and machine learning techniques to provide
accurate and timely crop monitoring. The findings offer
valuable insights for enhancing agricultural management and
decision-making in similar agro-ecological regions.
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