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Synthetic microbial communities (SynCom) present a promising strategy for sustainably
enhancing agricultural productivity and ecological resilience. This review critically discusses
recent advancements in applying SynCom within agricultural ecosystems and highlights the
practical benefits for economic sustainability. Plant growth-promoting (PGP) traits are
essential for developing SynCom, as they enhance plant growth, increase nutrient uptake,
improve stress tolerance, and support resistance to pathogens. SynCom demonstrates
significant effectiveness as a biofertilizer, substantially improving soil health and crop
yields through enhanced nutrient cycling and bioavailability. Its role as a biopesticide is also
significant, as it offers an eco-friendly approach to insect pest management. The
integration of SynCom into agricultural practices has proven to enhance plant disease
resistance, significantly contributing to crop resilience. Moreover, SynCom plays a vital role
in maintaining soil fertility, promoting carbon sequestration, and mitigating the impacts of
climate change. Its applications extend to environmental remediation, where it effectively
degrades hazardous pollutants in agricultural soils and efficiently processes lignocellulosic
biomass, supporting sustainable biomass utilization. SynCom offers considerable
advantages but also faces challenges, including community stability, environmental
adaptability, and regulatory concerns. Future research efforts aim to address these
limitations and enhance SynCom's efficacy regarding long-term agricultural sustainability.
Our review provides valuable insights for policymakers, practitioners, and researchers to
construct SynCom-based strategies that promote plant growth, enhance sustainable
agriculture, and support environmental conservation.
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1. INTRODUCTION
Soil fertility is vital

in agricultural development,

elements for their nutrition, including the macronutrients

particularly for crops, and significantly contributes to national
development (Suntoro et al., 2024). Soil nutrients are
essential for plant growth and productivity. Nutrients are
divided into two categories: macronutrients and
micronutrients. Plants require a minimum of 14 mineral
STISSA, p-ISSN 1412-3606 e-ISSN 2356-1424
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nitrogen (NOs", NH4*), phosphorus (HsPO4’, HPO4%), potassium
(K*), calcium (Ca?*), magnesium (Mg?*), and sulfur (SO4%), as
well as the micronutrients chlorine (Cl), boron (B(OH)4), iron
(Fe?*), manganese (Mn?*), copper (Cu?*), zinc (Zn?*), nickel
(Ni?*), and molybdenum (Mo0,2). These essential nutrients
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are typically sourced from the soil (White & Brown, 2010). The
primary macronutrients essential for plant growth are
nitrogen (N), phosphorus (P), and potassium (K), commonly
referred to as NPK (Dhaliwal et al., 2024). Among these, N and
P play significant roles, as they are crucial for regulating plant
development and enhancing crop production (Dhaliwal et al.,
2024; Wahba & Zaghloul, 2024). K also plays a key role in
water regulation, nutrient transport, and disease resistance.
Soil microbes are diverse microorganisms, including bacteria,
fungi, archaea, and protists, essential for maintaining soil
health and supporting ecosystem functions. These
microorganisms play critical roles in nutrient cycling,
decomposition of organic matter, and soil fertility (Chen et al.,
2024; Wang et al., 2024). Plant growth-promoting bacteria
(PGPB) are increasingly utilized in agriculture to enhance crop
yields, reduce dependence on chemical fertilizers and
pesticides, and improve soil health (Chowhan et al., 2023; Fan
& Smith, 2021). SynCom involves selecting strains for specific
purposes (Devi & Balachandar, 2022). The role of SynCom can
effectively enhance soil ecological functions and promote
environmental sustainability (Shayanthan et al., 2022; Xu et
al., 2025). Synthetic consortia have the potential to enhance
crop productivity via nutrient cycle and form soil aggregation,
leading to improved soil porosity, and effectively address
agricultural challenges (Karkaria et al., 2021). The design and
assembly of SynCom require a comprehensive understanding
of microbial ecology, genetics, metabolic pathways, and
strain-specific characteristics (Johns et al., 2016). SynCom
construction involves identifying and integrating individual
microbial strains based on their desirable traits and functions,
as described by Chem and Ito (2025). Depending on specific
agricultural purposes, SynCom can be developed from various
sources, including natural environments, microbial culture
collections, and gene banks (Luo et al., 2024; Zhang et al.,
2019; Zhuang et al.,, 2021). For instance, plant growth-
promoting SynComs are often sourced from environments
exhibiting exceptional plant health, growth, or stress
resilience (Liu et al., 2022). Similarly, SynCom derived from
the rhizosphere of healthy plants can effectively enhance
crop health, growth, and stress tolerance, leading to high-
yielding and disease-resistant varieties. Additionally, SynCom
isolated from extreme environments, such as high salinity,
drought, or contaminated soils, can significantly improve
plant tolerance and resilience (Chaudhary et al., 2023).
SynCom development is crucial for regulating nutrient cycles,
fostering plant health, and maintaining ecosystem resilience.
Therefore, this review aims to demonstrate recent
advancements in research on the application of the synthetic
microbial community platform in agricultural ecosystems and
its practical benefits for economic sustainability. Practical
insights into improving soil ecological functions through PGP
traits are also included without the need for extensive
investigation into the underlying scientific mechanisms.

2. Plant growth-promoting traits and their mechanisms
influence crop productivity
PGP traits refer to various beneficial characteristics that
microorganisms can provide to plants, leading to enhanced
growth, improved nutrient uptake, and increased stress
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tolerance. These traits also contribute to disease suppression
and promote overall soil health. PGP traits can be categorized
into direct and indirect mechanisms. Direct mechanisms
include nutrient solubilization (P, K, Zn-solubilization, and N-
fixation), phytohormones (indole-3-acetic acid (lAA),
cytokinins, and gibberellins (GAs), and the synthesis of
siderophore, enhancing plant iron uptake. Indirect
mechanisms include biocontrol activities in which
microorganisms suppress plant pathogens by producing
antibiotics, releasing hydrolytic enzymes, and generating
volatile compounds such as hydrogen cyanide (HCN)
(Chowhan et al., 2023; Cueva-Yesquén et al., 2021; Unlii et al.,
2024) (Table 1). Pseudomonas is recognized for a diverse
array of PGP traits, which include antibiotic production, P-
solubilization, N-fixation, 1-aminocyclopropane-1-
carboxylate (ACC) deaminase activity, and phytohormone
synthesis (Fan & Smith, 2021). Furthermore, Bacillus species
are well-known for their abilities in N-fixation, P-
solubilization, siderophore production, and biocontrol
activities (Chowhan et al., 2023), while Rhizobium is mainly
associated with N-fixation in legume-rhizobia symbiosis
(Lindstrém & Mousavi, 2020). A study by Ikhwan et al. (2021)
revealed that developing a bacterial consortium with PGPB
can enhance maize (Zea mays L.) production. Furthermore,
Pattani et al. (2023) indicated that utilizing the PGPB
consortia can improve the overall growth of tomatoes
(Solanum lycopersicum L.). Similarly, Devi et al. (2018)
demonstrated that applying these consortia can enhance
potato (Solanum tuberosum L.) yield. Shilev et al. (2020)
studied these consortia and found that they can improve
spinach (Spinacia oleracea L.) production. Turino Mattos et al.
(2023) also reported the positive effects of using these
consortia in rice (Oryza sativa L.) cultivation. However, the
role of soil microbial communities in ecosystem functioning
does not always contribute positively to soil health (Chen et
al., 2024). Various challenges inhibit their capacity to enhance
soil quality, including limited nutrient availability, adverse
environmental conditions (Sembiring et al.,, 2024), sail
disturbances, and pathogens (Rasheela et al., 2024).

PGP traits are crucial for microbial consortia to enhance
plant growth, increase nutrient uptake, improve stress
tolerance, and support resistance to pathogens. These traits
have been extensively investigated in beneficial microbes,
particularly in plant growth-promoting rhizobacteria (PGPR)
and endophytes. Potential PGP traits for microbial
applications that enhance plant growth include nutrient
solubilization (P, K, and Zn), siderophore production, and N-
fixation. Additionally, phytohormone production involving
IAA, cytokinins, and GAs, through ACC deaminase, plays a
crucial role in enhancing plant growth response to the effect
of PGPR (Jaroszuk-Sciset et al., 2019). Biocontrol and plant
protection traits involve the production of antibiotics such as
iturins and bacillomycins (Dunlap et al., 2019), hydrolytic
enzymes including chitinases, 6-1,3-glucanases, proteases,
and cellulases (Chlebek et al., 2022), HCN (Sehrawat et al.,
2022), and biosurfactant production (Jumpathong et al.,,
2022). A recent study by Denaya et al. (2021) emphasized the
potential of a SynCom composed of Citrobacter braakii, C.
freundii, and Pseudomonas stutzeri for promoting plant growth.
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Table 1. PGP traits and nutrient acquisition mechanisms. PGP traits are beneficial characteristics of microorganisms, especially rhizobacteria and endophytes, that enhance plant
growth by improving nutrient acquisition, hormone regulation, stress tolerance, and pathogen suppression. Plants obtain nutrients from soil through mass flow (nutrients
move with water), diffusion (nutrients move from high to low concentration), and root interception (direct contact with roots).

PGP traits

Nutrient acquisition mechanisms

Phosphorus solubilization

Potassium solubilization

Zinc solubilization

Microorganisms solubilize phosphorus (P) through various biochemical and biological mechanisms, converting insoluble phosphorus into
bioavailable forms that plants can absorb. These mechanisms primarily involve the secretion of organic acids and the production of phosphatase
enzymes. Certain microorganisms produce and release organic acids into the soil, including gluconic, oxalic, citric, malic, lactic, and acetic acids.
These acids lower the soil pH by releasing protons (H*), which create acidic conditions that promote the dissolution of insoluble phosphate
minerals, such as tricalcium phosphate, Cas(PO,).. This acidification process enhances the solubility of inorganic phosphate. Additionally, these
organic acids contain hydroxyl (-OH) and carboxyl (-COOH) groups that can chelate metal cations (Ca?*, Fe?*, AlI®*) commonly associated with
insoluble phosphate complexes. Chelating these cations helps release phosphate ions into the soil, making them more accessible to plants.
Similarly, microorganisms can produce phosphatases and phytases, breaking down organic phosphorus compounds into inorganic phosphate.
These organic phosphorus compounds bond with molecules such as carbon chains, proteins, nucleic acids, and phospholipids. Phosphatases
hydrolyze various organic phosphorus compounds, while phytases target phytate (inositol hexakisphosphate), a common form of organic
phosphorus in soil. When these organic compounds break down, they release inorganic phosphate, which is present in the free ionic forms of
orthophosphate ions (H,PO4, HPO4%, and PO,*). Through enzymatic action, phosphorus is converted from organic forms into inorganic phosphate
(orthophosphate), making it readily available for plant uptake. Bacteria such as Bacillus, Pseudomonas, Enterobacter, and Rhizobium, along with
fungi like Aspergillus and Penicillium, as well as arbuscular mycorrhizal fungi (AMF), have been shown to solubilize phosphorus (P) effectively.
Although potassium (K) in soil is abundant, over 90-98% of it exists in insoluble or fixed forms that plants cannot absorb directly. Microorganisms
can solubilize potassium from these insoluble mineral sources, including mica (XY23Z4010(OH, F),), where (X) can be K, Na, Ba, Ca, Cs, (H30), or
(NHa); (Y) can be Al, Mg, Fe?, Li, Cr, Mn, V, or Zn; and (Z) can be Si, Al, Fe?*, Be, or Ti. Other sources include feldspar [(Ca, Na, K)AISizOs], and illite
(KH30).(Al, Mg, Fe)2.(Si Al)4.010.[(OH)2(H,0)]. Certain microorganisms produce organic acids such as citric, oxalic, tartaric, gluconic, and malic acids.
These acids lower soil pH by releasing H* ions, further promoting the dissolution of potassium-containing minerals. The lower soil pH disrupts the
structure of feldspar, especially K-feldspar, a K-bearing aluminosilicate mineral (KAlSisOs). Organic acids bind to Al**, Fe3*, Si**, and other structural
ions in K-bearing minerals, leading to the dissolution of the mineral matrix. Protons (H*) secreted by certain microorganisms exchange with K*ions
bound in these mineral matrices, causing the release of K* ions into the soil. These processes transform structurally bound or mineral-occluded
potassium into plant-available K* ions.

In sail, a significant portion of zinc (Zn) is found in insoluble forms, including zinc carbonate (ZnCOs), zinc oxide (Zn0O), zinc hydroxide (Zn(OH),),
and zinc phosphate (Zn3(PQ4),). These forms do not easily dissolve in water, particularly in alkaline conditions, making zinc unavailable to plants.
In alkaline conditions, Zn?* reacts with hydroxide (OH"), carbonate (COs%), or phosphate (PO,4*) ions to form poorly soluble precipitates. Hence,
alkaline soils promote zinc deficiency because Zn?* precipitates or binds tightly to soil components. Similarly, certain microorganisms can solubilize
zinc in the soil by producing organic acids such as gluconic acid, citric acid, oxalic acid, lactic acid, malic acid, and chelating agents. These organic
acids lower the soil pH by releasing protons (H*), increasing zinc compounds’ solubility. These acids chelate Zn?* ions from insoluble forms such as
Zn0, ZnCOs, Zn(OH),, and Zns(PO4),. As Zn?* is continuously chelated from insoluble forms, more Zn?* is released. Chelation by organic acids helps
Zn?* reprecipitate with other anions, such as OH™ or PO,*, keeping it in a soluble form available for plants. This process is critical in alkaline and
calcareous soils, where zinc is commonly present but often poorly available.
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PGP traits

Nutrient acquisition mechanisms

Nitrogen fixation

Siderophore production

Atmospheric nitrogen (N2) has a strong triple bond, which makes it chemically inert and unavailable to most organisms. However, certain
microorganisms can convert atmospheric nitrogen gas (N2) into ammonia (NHs) through biological nitrogen fixation (BNF). This conversion occurs
through an enzymatic reaction catalyzed by nitrogenase. The nitrogenase enzyme complex, which consists of dinitrogenase reductase and
dinitrogenase, promotes the reduction of inert atmospheric N into bioavailable ammonia (NHs). This process requires significant energy (16 ATP
molecules to fix one N2 molecule into two NH3 molecules) and involves transferring electrons from ferredoxin or flavodoxin to dinitrogenase
reductase, which then passes the electrons on to dinitrogenase. As a result, two molecules of ammonia (NHs) are produced from one molecule of
N,. Once produced, ammonia (NHs) is often protonated to form ammonium (NH;*) under soil conditions. Plants can then directly assimilate NH,*
into amino acids such as glutamate and glutamine, as well as into nucleic acids and chlorophyll.

Siderophores are high-affinity, low molecular-weight chelating compounds that microorganisms secrete under conditions of iron (Fe®*) limitation.
Iron (Fe®*) is crucial for various plant processes, including chlorophyll synthesis, respiration, and enzyme function. However, Fe3* can form insoluble
hydroxides and oxides in aerated or alkaline soils, making it less available to plants. Microorganisms synthesize and secrete siderophores, which
are iron-chelating molecules that bind tightly to Fe?* and form soluble Fe?*-siderophore complexes. Plants can then absorb iron from these
complexes through membrane-bound transport systems.

Phytohormones

Indole-3-acetic acid (IAA)

Cytokinins

Gibberellins (GAs)

ACC deaminase

Indole-3-acetic acid (IAA) is an auxin, a plant hormone crucial in promoting plant growth. It influences important processes such as cell division,
elongation, and differentiation. Microorganisms produce IAA as a secondary metabolite, which helps promote cell elongation by activating H*-
ATPases. Although IAA is crucial for plant development, its effects can vary depending on the dosage, with high concentrations sometimes
inhibiting growth.

Cytokinins support plant growth through cell division, promote shoot organogenesis, delay senescence, enhance nutrient allocation, and increase
resilience to stress. This hormone activates cyclin-dependent kinases (CDKs) and cyclins that control the transition from the G1 to the S phase of
the cell cycle. Additionally, cytokinins upregulate the WUSCHEL (WUS) and CLAVATA (CLV) genes, crucial for maintaining stem cell populations in
the shoot apical meristem. It also inhibits the expression of senescence-associated genes (SAGs) and supports chlorophyll synthesis by maintaining
the activity of enzymes. Furthermore, cytokinins regulate nitrate transporter (NRT1) genes, promoting the translocation of essential nutrients (N,
P, and K) from older to younger tissues. In addition, they induce the expression of antioxidant enzyme genes, such as superoxide dismutase and
catalase, which enhance tolerance to drought, salinity, and extreme temperature conditions.

Gibberellins (GAs) promote stem elongation, seed germination, flowering, and fruit development. GAs enhance RNA and protein synthesis,
promoting longitudinal growth in response to light and supporting the germination process. GAs promote cell wall loosening by upregulating genes
associated with expansin and xyloglucan endotransglucosylase/hydrolase (XTH). Furthermore, they activate the expression of hydrolytic enzymes,
such as a-amylase and proteases, in the aleurone layer of cereal seeds. This action helps decompose stored starch and proteins in the endosperm
into soluble sugars and amino acids, providing essential energy and building blocks for the developing embryo. In certain plants, particularly long-
day species, GAs promote flowering by inducing the expression of floral meristem identity genes, including LEAFY (LFY) and SOC1.
Microorganisms produce 1-Aminocyclopropane-1-carboxylate (ACC) deaminase to regulate the levels of ethylene (C;H,4), a stress-related plant
hormone that can inhibit growth, especially under stress conditions. While small amounts of ethylene regulate normal growth, excessive ethylene
can inhibit root elongation, lead to leaf yellowing and senescence, and delay seed germination. In response to abiotic or biotic stress, plants
increase ethylene synthesis via the precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The ethylene synthesis in plants follows the pathway
by which methionine is converted to S-adenosyl methionine through SAM synthetase, S-adenosyl methionine is converted to ACC through ACC
synthase, and ACC is converted to ethylene via ACC oxidase. In the biosynthetic pathway, ACC is the final step before ethylene synthesis. Therefore,
ACC is referred to as the immediate precursor. Microorganisms produce ACC deaminase to break down ACC, the immediate precursor of ethylene,
into ammonia (NHs) and a-ketobutyrate. This process reduces ethylene production and helps mitigate its negative effects on plant growth.
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PGP traits

Nutrient acquisition mechanisms

Lipopeptide antibiotics

Iturins and bacillomycins

Iturins and bacillomycins are lipopeptide antibiotics that serve as antifungal agents, primarily produced by Bacillus species such as B. subtilis, B.
amyloliquefaciens, and B. velezensis. These lipopeptides act as biocontrol agents, inhibiting plant pathogens and disrupting fungal cell membranes.
Iturins and bacillomycins are inserted into fungal cell membranes through an amphiphilic structure. This insertion leads to the formation of pores
or membrane disruption, resulting in ion leakage (including K* and Ca?*), a loss of membrane potential, and, ultimately, cell lysis and death.

Enzymes

Chitinases, 8-1,3-glucanases,
proteases, and cellulases

Certain microorganisms, particularly Bacillus, Pseudomonas, and Trichoderma, secrete lytic enzymes such as chitinases, 8-1,3-glucanases,
proteases, and cellulases. These enzymes primarily degrade components of pathogenic microbial cell walls, acting as biocontrol agents. Chitinases
hydrolyze chitin, a major component of fungal cell walls, while 8-1,3-glucanases break down 8-glucans, essential for maintaining the integrity of
the fungal cell wall. Proteases break down pathogens by hydrolytically cleaving the peptide bonds within protein molecules on the pathogen's
surface or within its internal structures. This process reduces these proteins into smaller peptides or amino acids. As a result, proteases can
effectively disrupt bacterial biofilms, dismantle structural components such as the cell wall or extracellular matrix, and degrade host defenses,
including immune signaling proteins and antimicrobial peptides. Cellulases, conversely, target the exopolysaccharides (EPS) found in bacterial
biofilms, which serve as a protective matrix surrounding bacterial cells. By hydrolyzing the structural 8 (1-4) glycosidic linkages within the EPS,
cellulases degrade the biofilm, weakening the pathogen’s structural integrity and disrupting its protective layer. These enzymatic activities can
induce the lysis of phytopathogen cells.

Volatile compounds

Hydrogen cyanide (HCN)

Certain microorganisms produce hydrogen cyanide (HCN) as a biocontrol agent. Although HCN is toxic to plants at high concentrations, the
amounts produced by beneficial microbes selectively target pathogens without harming the plants. Low concentrations of HCN do not harm plants
but effectively suppress pathogens. The production of HCN is tightly regulated by microbial expression and soil conditions. HCN disrupts the
respiratory electron transport chain in pathogenic fungi and bacteria by inhibiting cytochrome c oxidase, an essential enzyme for cellular
respiration. This inhibition blocks ATP synthesis in these pathogens, eventually leading to energy depletion and death.

Biofilm - Extracellular polymeric substances

Exopolysaccharides (EPS)

Exopolysaccharides (EPS) are high-molecular-weight polysaccharides secreted by microorganisms such as Bacillus, Pseudomonas, Rhizobium, and
Azospirillum. These substances support plant growth by enhancing root-soil interactions, promoting microbial survival, and improving plant stress
tolerance. EPS are viscous compounds rich in sugar. When microorganisms colonize plant roots, they produce EPS that forms a protective biofilm
for the roots. The EPS molecules contain hydrophilic (water-attracting) chemical groups, allowing them to absorb and retain water molecules. This
EPS matrix effectively holds water around the root surface, even as the soil begins to dry, maintaining root hydration, particularly during drought
or heat stress.
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This SynCom was developed based on the strains’ abilities
to solubilize macronutrients and produce IAA. The findings
suggest that applying a SynCom with these characteristics can
significantly improve nutrient uptake, enhance systemic
resistance against pathogens, and increase plant stress
tolerance. Additionally, research by Kaur et al. (2022)
identified another SynCom consisting of Erwinia sp. EU-
B2SNL1, Chryseobacterium arthrosphaerae EU-LWNA-37, and
Pseudomonas gerardia EU-MRK-19 promote plant growth by
improving nutrient uptake, disease resistance, and stress
tolerance. These strains were selected based on their unique
traits, Erwinia sp. EU-B2SNL1 as an N-fixer, C. arthrosphaerae
EU-LWNA-37 as a P-solubilizer, and P. gerardia EU-MRK-19 as
a K-solubilizer. The study concluded that a SynCom based on
selected strains is more effective than applying individual
strains. The development of SynCom utilizing PGP traits is a
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practical approach to enhancing nutrient availability in the
soil. These beneficial effects occur through diverse
mechanisms, such as resource competition, antimicrobial
compound production, and induction of plant defense
responses.

3. Applications of SynCom in agricultural systems
3.1. SynCom as biofertilizers

Biofertilizers are natural fertilizers that utilize beneficial
microorganisms to enhance soil fertility and support plant
growth. They play an essential role in modern agriculture by
improving soil health, facilitating nutrient uptake, and
promoting sustainable farming practices (Ammar et al., 2023).
SynCom has been developed using beneficial microorganisms
as biofertilizers to enhance soil quality (Kabir et al., 2024).

Vigorous growth -
Reproductive success <
Healthy leaves <
Strong root system <

/.05 Macronutrients
; Micronutrients
Organic molecules:

Figure 1. Synthetic microbial communities (SynCom) function as plant growth-promoting bacteria (PGPB) by enhancing
nutrient uptake, protecting against pathogens, and increasing resistance to environmental stress.
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Ikhwan et al. (2021) had reported that forming a SynCom
with PGPB can enhance maize (Z mays L.) production. The
findings indicated that a specific PGPB formula could improve
the vyield for specific Z mays L. varieties. For instance,
consortia with endophytic bacteria isolates, Azospirillum sp.,
cellulolytic, and ligninolytic were the most effective
formulation for Pertiwi-3 cultivation. In contrast, PGPB
consortia with endophytic bacteria isolates, cellulolytic,
ligninolytic, Acetobacter sp., and Azospirillum sp. produced
higher yields for Talenta and Bisma. SynCom solubilizes
essential nutrients and mobilizes other macro- and
micronutrients to enhance nutrient uptake, protect against
pathogens, and increase resistance to environmental stress
(Fig. 1). Interactions between host plants and SynCom involve
dynamic signaling and metabolic exchanges. Host plants
release organic compounds (sugars, amino acids, and organic
acids) through their roots, which attract SynCom. In response,
SynCom secretes signaling molecules recognized by the plant
roots, initiating colonization on the root surface or within root
tissues. This interaction enhances nutrient transfer efficiency
and protects roots from pathogenic microorganisms through
biofilm formation, significantly influencing plant growth and
overall health. This enhanced nutrient bioavailability directly
promotes plant growth and productivity (Kaur et al., 2022)

Furthermore, Santoyo et al. (2021) concluded that
SynCom can produce phytohormones, including auxins,
cytokinins, gibberellins, ethylene, and abscisic acid, which are
crucial regulators of plant growth, root development, and
overall yield enhancement. Additionally, these microbial
consortia can produce siderophores, antibiotics, and volatile
organic compounds that protect plants from pathogens,
reducing disease incidence and enhancing biocontrol efficacy
(Hansen et al., 2024; Jing et al., 2024; Misra et al., 2024).
Previous studies showed that SynCom secretes phosphatases,
cellulases, and proteases, which decompose organic matter

Gluconic acid, Citric acid |
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and release essential nutrients for plant uptake. This
enzymatic activity plays a key role in sustainable agriculture
and soil health (Chiaranunt & White, 2023). These substances
enhance nutrient availability and root uptake, substantially
enhancing plant growth. For instance, P-solubilizing bacteria
can convert insoluble phosphorus compounds into soluble
forms readily available for plant uptake (Zhou et al., 2024).
Phosphate-solubilizing bacteria (PSBs) are crucial in
enhancing phosphorus availability for plant uptake. They
produce organic acids that chelate, release inorganic
phosphorus, and secrete enzymes such as phosphatases to
break down organic phosphorus. This process increases the
accessibility of phosphorus in the soil, promoting overall plant
growth and yield by ensuring that this essential nutrient is
readily available for plants to absorb (Fig. 2). Plants can
enhance their growth, cell division, and energy production
with increased phosphorus availability, as this essential
macronutrient plays a crucial role in these processes. PSBs
function as biofertilizers, providing an environmentally
friendly alternative to chemical fertilizers. This approach not
only reduces soil pollution but also promotes ecological
balance.

3.2. SynCom as biopesticides and biological control of
plant disease

Integrating beneficial insecticidal bacteria can improve
insect pest management strategies. Selected microbial strains
exhibit potential insecticidal properties within SynCom,
offering potential novel biopesticides. Utilizing multiple
modes of action through various microbial agents can
develop biopesticides that operate more efficiently and
provide broad-spectrum activity. Integrating different
bacterial strains with diverse action mechanisms can lead to
stronger and more effective biocontrol than single strains.

| Inorganic | Solubilized I, P
: i phosphorus A . —
Phosphatases | L P g0 e
Phosphate- Synthesis | Mineralization ;J 0 58\ iR )
solubilizing bacteria Ll ‘
(PSBs) %
il N

Promote plant growth and
increase crop production

Figure 2. Phosphate-solubilizing bacteria (PSBs) enhance phosphorus availability for plants by producing organic acids that
release inorganic phosphorus and secrete enzymes like phosphatases to break down organic phosphorus. This increases
phosphorus accessibility in the soil, promoting plant growth and yield
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A recent study by Chem et al. (2025) demonstrated that a
combination of four promising non-Bt (beyond Bacillus
thuringiensis) bacterial strains, Mesobacillus thioparans CC8,
Bacillus mobilis CC13, Bacillus subtilis CC18, and
Chromobacterium rhizoryzae 4C2, was more effective against
the diamondback moth, Plutella xylostella L., compared to
individual applications. These insecticidal bacteria produce
endotoxins that can kill insect larvae (Pathma et al., 2021;
Seenivasagan & Babalola, 2021). Tan et al. (2021)
demonstrate that mixing two fungi, Paranosema locustae and
Beauveria bassiana, effectively manages grasshopper
(Locusta migratoria) populations. P. locustae is commonly
used in China as a biological control agent for grasshoppers.
Furthermore, the combined application of P. locustae and B.
bassiana is more effective against L. migratoria than using
either fungus alone. Similarly, a recent case study by Spescha
et al. (2023) studied SynCom to control the cabbage maggot
(Delia radicum) (Diptera: Anthomyiidae), a well-known pest
that causes significant damage to Brassicaceae crops. SynCom
was developed by combining Pseudomonas chlororaphis
(bacteria), Steinernema  feltiae  (nematodes), and
Metarhizium brunneum (fungus). P. chlororaphis was selected
for its proven effectiveness against insect pests and fungal
plant diseases, while S. feltiae and M. brunneum have a long
history of commercial use against various pest insects. The
study’s results indicated that SynCom significantly reduced
pest survival rates in greenhouse experiments. These
microbial consortia perform through various mechanisms,
including insecticidal proteins such as Cry, Cyt, and Vip
proteins, which disrupt insect digestive systems and
ultimately lead to their death.

Olanrewaju and Babalola (2019) studied the application of
a SynCom composed of B. subtilis A1, Pseudomonas sp. Al8,
Pseudomonas sp. A29, S. globisporus NWU4, S. griseoflavus
NWU14, and S. heliomycini NWU198 to control Fusarium
graminearum. Their research demonstrated that SynCom
produced antimicrobial compounds that effectively inhibited
the growth of F. graminearum. B. subtilis is well-known for
producing lipopeptides, including iturin, surfactin, and
fengycin, which exhibit antifungal properties (Kaspar et al.,
2019). Likewise, Streptomyces species are recognized for
producing natural antibiotics, including antifungal
compounds (Donald et al., 2022). Pseudomonas strains also
generate antimicrobial compounds such as phenazines,
pyoluteorin, pyrrolnitrin, and 2,4-diacetyl phloroglucinol,
which are antifungal effects (Fischer et al., 2013). Antifungal
lipopeptides such as iturin, surfactin, and fengycin, produced
by these microbes, can effectively inhibit fungal growth by
damaging cell membranes and causing cell lysis. These
findings highlight the potential of the SynCom approach for
controlling fungal plant pathogens.

Utilizing SynCom offers a sustainable solution for
biopesticides and the biological control of plant diseases.
SynCom provides a more stable and effective alternative to
single-strain biocontrol agents. Approaches based on SynCom
support integrated pest management (IPM) principles by
reducing reliance on chemical pesticides, minimizing
environmental pollution, decreasing pesticide resistance, and
limiting adverse effects on non-target organisms. This
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method provides eco-friendly, effective, and resilient

biopesticide solutions.

3.3. SynCom applications in disease resistance and
stress tolerance

SynCom can protect plants from various stressors,
including biotic and abiotic. The biotic stressors include
pathogens (fungi, bacteria, and viruses), insects, and weeds,
which can infect plants, feed on plant tissues, and compete
for essential resources, adversely affecting plant health and
productivity. On the other hand, abiotic stressors refer to the
negative impacts of non-living environmental factors,
including extreme temperatures, drought, salinity, nutrient
deficiencies, and metal toxicity. SynCom represents a
promising microbial consortium that not only enhances plant
disease resistance but also improves stress tolerance (de
Souza et al., 2020). SynCom can secrete hydrolytic enzymes,
including chitinases, glucanases, and proteases, which target
and break down the cell walls of fungal pathogens, enhancing
plants' disease resistance (Wang et al., 2021). Additionally,
SynCom can solubilize nutrients and produce phytohormones
that promote plant health and resilience to stress, ultimately
reducing their susceptibility to diseases (Mukherjee et al.,
2021).

Bacillus and Pseudomonas have been widely utilized in
sustainable agriculture to enhance soil health, improve crop
yields, increase plant tolerance to drought, cold, and salinity
stresses, and provide effective biocontrol against plant
pathogens (Devi et al., 2025; Kaur et al., 2024; Raza et al.,
2024; Singh et al., 2025; Swiontek Brzezinska et al., 2022;
Vega-Celedodn et al., 2021). They assist plants in tolerating
stress and safeguarding them from pathogens. These
organisms produce compounds that combat harmful
microbes, including antibiotics, lytic enzymes, and
biosurfactants, while also activating the plant's defense
mechanisms, such as induced systemic resistance (ISR).
Furthermore, they enable plants to better withstand drought,
cold, and salinity by generating osmoprotectants and
exopolysaccharides (EPS) (Singh et al.,, 2015). Ultimately,
these beneficial interactions are essential for their capacity to
form biofilms and colonize plant roots. These diverse
microbial communities perform essential ecological
functions, including nutrient cycling and N-fixation, producing
plant growth hormones, and bolstering plant defense
mechanisms. This approach offers an environmentally
friendly alternative to chemical pesticides.

Ma et al. (2023) investigated a SynCom composed of
Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. HB9,
Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces
sp. MB6, and Bradyrhizobium sp. MB15 has shown
effectiveness in enhancing disease resistance against the
plant pathogen F. oxysporum. This SynCom was developed
based on its ability to fix nitrogen and P-solubilization and
produce chitinase, cellulase, and xylanase. The study
indicated that SynCom can significantly improve plant health,
promote disease resistance, and enhance growth efficiency. A
recent study by Khan et al. (2022) explored the potential of
SynCom to promote wheat growth under salinity stress, using
NaCl concentrations to determine strains exhibiting tolerance
to salinity.
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Table 2. The application of SynCom in sustainable agriculture contributes to improved soil health, increased crop yields, and enhanced plant resilience to stresses such as drought,
cold, and salinity. Designing microbial consortia with specific PGP traits and enzymatic activities can adopt a strategic and promising approach to enhancing ecological
functions in sustainable agriculture

SynCom

Desired function

Plant model species

Microbial construction strategies and results-based experiments

Reference

Enterobacter ludwigii EU-BEN-22,
Micrococcus indicus EU-BRP-6,
Pseudomonas gessardii EU-BRK-55

Claroideoglomus claroideum,
Naganishia albida, Burkholderia
caledonica

Serratia surfactantfaciens EU-
C3SY2, Serratia marcescens EU-
D1RNL1, Serratia

nematodiphila EU-D2SRY4, Erwinia
persicina EU-B1RT3.1, Serratia sp.
EU-C1RK1

Pseudomonas sp. EU-C3ST.R1,
Micrococcus indicus IARI-JR-44,
Bacillus horikoshii 1ARI-S-45

Trichoderma atrobruneum 15F,
Pseudomonas sp. 2B, Bacillus
amyloliquefaciens 9B, Bacillus
velezensis 32B

Improving soil health
and crop yields

Helping plants
tolerate drought
stress

Enhancing the
growth of the oats
crop

Enhancing the
growth of the cereal
crop

Antagonistic activity
against Fusarium
oxysporum f. sp.
cumini (Foc)

Solanum melongena L.

Fragaria x ananassa

Avena sativa L.

Zea mays L.

Cuminum cyminum

The isolated bacteria were assessed for N-fixation, P-solubilization,
and K-solubilization. Microbial interactions can improve plant growth
metrics (root and shoot length, biomass) and physiological parameters
(chlorophyll, carotenoids, total soluble sugars, and phenolic content).
Three types of arbuscular mycorrhizal fungi (AMF), three types of plant
growth-promoting rhizobacteria (PGPR), and three types of plant
growth-promoting yeasts (PGPY) were chosen for their potential to
enhance plant growth under environmental stress. This combination
led to improvements in biomass, relative water content, fruit quantity,
photosynthetic rate, transpiration, stomatal conductance, and the
quantum vyield of photosystem Il. Additionally, it increased the
concentrations of N, P, and K and enhanced antioxidant activities and
chlorophyll content.

Isolated strains were evaluated for various PGP traits, including P, K,
Zn, and Se solubilization, and the production of siderophores, NHs, IAA,
HCN, and N-fixation. The consortium can enhance oat plants' growth
and physiological parameters more effectively than other developed
microbial consortia, controls, and agrochemical fertilizers.

Bacterial strains were assessed for N-fixation, P, and K solubilization.
The combination of strains can enhance plant height, biomass, and
their physiological characteristics, including chlorophyll, carotenoids,
flavonoids, phenolics, and total soluble sugar content.

Bacterial, actinomycete, and fungal isolates were evaluated for their
antagonistic activity against Foc and their tolerance to various stress
conditions such as temperature, pH, salinity, and moisture. The study
also assessed the production of several metabolites, including
siderophores, HCN, NHs, IAA, the solubilization of P and Zn, and the
activity of hydrolytic enzymes, such as chitinase, 8-1,3-glucanase,
cellulase, amylase, lipase, protease, and chitosanase. This microbial
consortium can enhance biomass and vyield, improve disease
resistance, and increase the production of secondary metabolites and
antioxidant defense enzymes. Furthermore, it can help reduce
electrolyte leakage, increase chlorophyll and carotenoid content, and
contribute positively to plant height, dry weight, and seed yield.

Kaur et al. (2024)

Pérez-Moncada
et al. (2024)

Devi et al. (2024)

Devi et al. (2025)

Singh et al.
(2025)
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SynCom Desired function Plant model species Microbial construction strategies and results-based experiments Reference
Burkholderia sp. UWIGT-83, Helping plants Capsicum chinense Rhizobacteria were evaluated for their ability to produce ACC- Thomas-Barry et
Burkholderia sp. UWIGT-120 tolerate drought deaminase under drought stress conditions, along with PGP traits such al. (2024)

Bacillus subtilis 1S1, Bacillus
amyloliquifaciens 1S6, Bacillus fortis
IS7

Pseudomonas sp. TmR5a,
Curtobacterium sp. BmP22c

Bacillus sp., Delftia sp.,
Enterobacter sp.,
Achromobacter sp.

Pseudomonas sp. B14,
Sphingobacterium sp. B16,
Microbacterium sp. B19

stress

Antagonistic activity
against Fusarium
oxysporum f. sp. pisi
(Fop)

Helping plants
tolerate cold stress

Mitigation of salinity
stress

Helping plants
tolerate salinity
stress

Pisum sativum

Solanum
lycopersicum L.

Solanum
lycopersicum L.

Brassica napus L.

as P solubilization, NH3 production, siderophore synthesis, starch
hydrolysis, and IAA production. The rhizobacteria consortium can
improve germination and growth under drought stress.

Rhizospheric bacterial strains were assessed for their antagonistic
activity against Fop. Combining these rhizospheric bacterial strains can
help recover plants from pathogenic infections, reduce plant damage
from diseases, and promote growth.

Bacterial strains were assessed for their ability to produce auxins, P-
solubilization, nifH and acdS genes, and antimicrobial activity against
phytopathogenic bacteria. A bacterial consortium can enhance tomato
plant growth under normal and cold stress conditions.

Halo-tolerant rhizobacterial strains were selected for their ability to
solubilize P and produce siderophores, NH3, and IAA. This consortium
can enhance growth parameters, including leaf count, shoot and root
length, dry weight, the number of secondary roots, and chlorophyll
content, even in saline soil conditions.

Rhizobacteria were assessed for IAA production, ACC deaminase
activity, P-solubilization, siderophore production, SA production, NH;
production, HCN production, chitinase production, 1,3-8-glucanase
activity, antifungal activity, and compatibility assays. The
rhizobacterial consortium demonstrated the ability to increase the
number of live leaves, shoot length, and chlorophyll content.

Raza et al. (2024)

Vega-Celedon et
al. (2021)

Kapadia et al.
(2021)

Swiontek
Brzezinska et al.
(2022)
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The findings revealed that a SynCom combination of
Ensifer adhaerens strain BK-30, P. fluorescens strain SN5, and
B. megaterium strain SN15 significantly enhanced wheat
growth and yield in saline conditions. A study by Sembiring et
al. (2024) identified bacterial strains isolated from saline
vegetation types-mangrove forests, grasslands, and oil palm
plantations. The soil samples were analyzed, and ten bacterial
species were identified, including biofilm-forming species: P.
aeruginosa, B. gladioli, E. cloacae, B. ciceri, A. xylosoxidans, P.
flexa, and E. quasiroggenkampii. These biofilm formations
enhanced and stabilized the availability of N*, P?>*, and K*,
potentially be utilized for promoting plant growth under
salinity environments.

Designing SynCom based on PGP traits and enzymatic
activities presents a strategic and promising approach to
enhancing plant disease resistance and stress tolerance
(Table 2). These characteristics facilitate the development of
SynCom, which can protect plants by reducing pathogen
viability and infection rates. It is also used in treating plant
stress conditions. Biofilm formation and endophytic
colonization ability are essential for root colonization and
plant-microbe interaction traits. In vitro assays, greenhouse
or pot trials, and molecular studies are recommended for
evaluating the effectiveness of the constructed microbial
consortium. Hence, developing a SynCom incorporating these
PGP traits and their associated enzymatic activities has great
potential for sustainable agriculture (Chem & Ito, 2025).

3.4. SynCom in soil fertility and carbon sequestration

The significance of SynCom in nutrient cycling and organic
matter decomposition is necessary for promoting plant
growth and development (El Hamss et al., 2023; Kumar &
Verma, 2019). A study by Lyu et al. (2024) reveals that
SynCom can effectively break down organic matter and
provide essential nutrients to plants. Recent reports also
indicate that SynCom has successfully produced cellulases,
hemicellulases, and lignin-degrading enzymes to decompose
plant matter, ultimately improving soil fertility and enhancing
carbon sequestration (Bombardi et al., 2024; Vincze et al,,
2024). In the decomposition of organic matter, microbes
break down complex compounds, releasing simpler
substances such as glucose. This process contributes to the
formation of soil organic matter (SOM). The activity of these
microbes, along with the resulting SOM, plays a crucial role in
providing energy and carbon necessary for microbial growth
and survival. Additionally, SOM serves as a reservoir of
essential nutrients for plant growth and significantly
influences soil health and fertility. SynCom produces EPS,
stabilizes soil aggregates, protects organic carbon, and
facilitates long-term storage (Vandana et al., 2023). Through
the breakdown of organic matter, SynCom promotes the
stabilization of a significant portion of this material in the soil,
enhancing soil health. This stabilization process occurs over
extended periods and is vital for maintaining soil quality and
fertility.

Kaur et al. (2022) conducted a SynCom study to improve
soil health and crop productivity. The SynCom was designed
based on the PGP traits. These traits included IAA production,
P-solubilization, N-fixation, biocontrol properties, and plant

SAINS TANAH — Journal of Soil Science and Agroclimatology, 22(2), 2025

growth-promoting effects. The findings of the study revealed
that SynCom, which included Arthrobacter sp., Enterobacter
sp., Brevibacterium sp., and Plantibacter sp., led to a
significant enhancement in soil nitrate availability by 55%,
germination rates by 14.3%, plant height by 7.4%, and shoot
biomass by 5.4%. These results highlight the potential of
SynCom to improve soil fertility for sustainable agriculture.
Furthermore, a recent study conducted by Raklami et al.
(2019) exhibited the effectiveness of utilizing plant PGPR and
arbuscular mycorrhizal fungi (AMF) as a SynCom to enhance
crop nutrition, productivity, and soil fertility. The study
evaluated various rhizobacterial strains to determine their
capabilities in solubilizing P, K, and N-fixation as well as their
ability to generate siderophores, EPS, IAA, and HCN. The AMF
were assessed for the frequency of mycorrhizal infection in
roots before their introduction into the SynCom. The research
combined two PGPR strains, Acinetobacter sp. BS17 and
Rahnella aquatilis PGP27, along with two rhizobia, Ensifer
meliloti RhOF4 and E. meliloti RhOF155. The selected AMF
included Glomus sp., Sclerocystis sp., and Acaulospora sp.
Results indicated that SynCom inoculation showed significant
increases in the shoot and root dry weight of Vicia faba L.,
along with an enhancement in leaf number by 130%, 200%,
and 78%, respectively. Furthermore, mineral analyses
demonstrated that the application of SynCom improved soil
nutrient content, resulting in higher levels of N*, P?*, Ca®*, K*,
and Na* and increased sugar and protein content. The
construction of SynCom, which utilizes PGP traits, has been
designed to support sustainable agriculture. These PGP traits
include solubilization of P/K/Zn, siderophore production,
auxins, and EPS. Screening SynCom based on these traits can
provide a bacterial consortium that can effectively enhance
nutrient availability, improving plant growth. Hence,
designing SynCom using PGP traits is a crucial strategy in
modern agriculture to enhance productivity in an
environmentally sustainable manner.

3.5. SynCom in bioremediation of hazardous pollutants

SynCom has recently gained significant attention as a
promising approach to addressing pesticide residue
degradation (LU et al., 2024; Zhang & Zhang, 2022). These
bacterial consortia utilize diverse mechanisms to transform
hazardous pollutants into less harmful substances (Di Giulio
et al., 2020; Pang et al.,, 2023). SynCom possesses unique
metabolic pathways capable of breaking down contaminants
through enzymatic action. Enzymes produced by these
consortia detoxify pollutants, converting them into non-toxic
byproducts, improving environmental quality and soil health
(Chem & Ito, 2025). Among these enzymes, hydrolases and
oxidoreductases play crucial roles. Hydrolases degrade
organophosphate pesticides through hydrolysis, converting
them into less hazardous byproducts (Bhatt et al., 2021). On
the other hand, oxidoreductases convert organic pesticides
through oxidation-reduction reactions into friendly molecules
for plants (Alneyadi et al., 2018). Additionally, certain SynCom
strains produce dehalogenase enzymes capable of effectively
removing halogen atoms, such as chlorine, from
organochlorine pesticides (Buryska et al., 2018). This
enzymatic activity significantly reduces toxicity and enhances
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the susceptibility of pesticide molecules to further
degradation processes.

Liu et al. (2022) developed a SynCom consisting of
Rhodococcus sp. T3-1, Delftia sp. T3-6, and Sphingobium sp.
MEA3-1, which could degrade acetochlor by 97.81%. A recent
study by Malla et al. (2023) explored a SynCom of L.
plantarum JDARSH, L. rhamnosus ARJD, and B. shackletonii
APMAM for pesticide (chlorpyrifos, cypermethrin, and
glyphosate) degradation. SynCom achieved degradation rates
of 94.93% for chlorpyrifos, 89.4% for cypermethrin, and
87.01% for glyphosate. Recent research by Shetty et al. (2023)
indicates that hazardous pollutants have unique structures
and varying toxicity levels. Effective degradation requires
specific strains with significant metabolic pathways (Zhang &
Zhang, 2022). Developing a potential SynCom relies on
various factors, such as enzymatic degradation efficiency, pH,
temperature, and pollutant concentration. Focusing on these
factors allows us to identify potential SynCom that can
effectively degrade hazardous pollutants, promoting the
discovery of novel SynCom that improve degradation
performance. Furthermore, these strategies can easily
develop and assemble SynCom efficiently, even in irregular
conditions or with various pollutants.

3.6. SynCom in the degradation of lignocellulose for
sustainable biomass

Cellulose, hemicellulose, and lignin are the primary
components of plant cell walls, presenting significant
challenges for microbial degradation due to their complex
structures. The aromatic nature of lignin makes it particularly
resistant to degradation, while the presence of hemicellulose
and lignin restricts microbial access to cellulose, reducing
breakdown efficiency (Shikata et al., 2018; Wu et al., 2022).
Nevertheless, recent studies by Zhang et al. (2023) have
demonstrated that various microorganisms can degrade
these polymers effectively. SynCom has emerged as a
promising agent for efficiently converting lignocellulosic
residues into valuable products (Lin, 2022). Through
fermentation processes, SynCom employs specific enzymatic
activities to degrade lignocellulosic materials, including
cellulose, hemicellulose, and lignin, into simpler sugars. This
enzymatic conversion is essential for the production of
valuable bioproducts, such as biofuels (e.g., bioethanol and
biobutanol), chemicals like hydrogen, biosurfactants, bio-
based polymers, nutrients, and other commercially important
compounds, supporting the sustainable utilization of biomass
(Chem & Ito, 2025).

According to Lin et al. (2024), SynCom transforms
agricultural residues into valuable bioproducts by mixing
enzymatic breakdown with microbial fermentation. Initially,
polymers are converted into simpler molecules that serve as
substrates for microorganisms. During fermentation,
cellulases break down cellulose into glucose units,
hemicellulases degrade hemicellulose into sugar monomers,
and ligninases facilitate lignin decomposition (Nargotra et al.,
2023). For instance, Zheng et al. (2020) conducted a study on
rice straw degradation utilizing a SynCom designed based on
the degradation characteristics of specific microorganisms

and lignocellulose-degrading enzymes. A SynCom of
Parabacteroides, Alcaligenes, Lysinibacillus,
Sphingobacterium, and Clostridium achieved efficient
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degradation rates of rice straw, breaking down cellulose
(71.7%), hemicelluloses (65.6%), and lignin (12.5%). The
fermentation process resulted in the production of acetic acid
and butyric acid. Recently, Gad et al. (2024) investigated 86
bacterial isolates to evaluate their ability to produce
endoglucanase, exoglucanases, and B-glucosidase for the
degradation of cellulose. The MC29 (C. uda and P. jinjuensis)
and MC31 (C. uda and P. citronellolis) SynComs exhibited the
highest cellulose degradation potential, with MC31 achieving
46.15% and MC29 reaching 43.76% (Gad et al., 2024). Utilizing
SynCom to break down cellulose, hemicellulose, and lignin
into valuable products for sustainable development results in
the innovation of sustainable biofuels and biochemicals.
Nevertheless, several challenges exist, including the complex
structure of lignocellulose and the necessity to identify and
optimize high-activity microbial strains alongside their
enzymes. Advanced technologies such as genomics, synthetic
biology, and machine learning play a vital role in enhancing
the efficiency of microbial degradation and advancing the
industrial applications of lignocellulose utilization.

4. Challenges and limitations of the application of

SynCom

SynCom has been developed to address agricultural
challenges and enhance sustainable agricultural practices.
Despite their potential benefits, their applications may also
lead to unintended adverse effects. While SynCom can
effectively enhance plant growth, reduce dependency on
chemical inputs, and improve disease resistance, translating
laboratory results into practical field applications remains
challenging (Chem & Ito, 2025). Several factors influence their
effectiveness, including interactions with indigenous soil
microbes, variations in soil types, and diverse climate
conditions. The development and application of SynCom can
be more cost-effective than conventional agricultural inputs
(Tarig et al., 2025), making their efficient utilization critical for
competing with chemical fertilizers and pesticides. Moreover,

creating effective SynCom requires an in-depth
understanding of microbial ecology, plant-microbe
interactions, systems biology, crop physiology, and

environmental conditions (Chem & Ito, 2025). Furthermore,
some SynCom strains may produce inhibitory substances that
could negatively affect other community members (Wang et
al., 2022). Additionally, the introduced SynCom can become
dominant within microbial communities, potentially
disrupting ecosystem balance (Afanador-Barajas et al., 2021;
Dobrzynski et al., 2025). Such disruptions can alter nutrient
cycling, impacting plant nutrient uptake and soil health
(Korneykova et al., 2024). While SynCom might effectively
suppress pathogens, it could also negatively affect plant
health and crop vyields if improperly designed or applied.
Hence, careful design and thorough testing of SynCom are
essential to maximize beneficial microbial interactions,
enhance plant health, and mitigate potential risks.

5. Conclusions and future perspectives

Synthetic microbial communities (SynCom) represent an
innovative and effective strategy for enhancing ecological
functions and advancing sustainable agricultural practices.
SynCom offers a promising alternative to conventional

388



Chemetal.

agricultural inputs by optimizing plant health, resilience, and
productivity, significantly reducing reliance on chemical
fertilizers and pesticides, mitigating environmental impacts,
and helping crops adapt to climate change. Despite their
substantial potential, successfully integrating SynCom into
agricultural systems requires addressing critical challenges,
including community stability, environmental adaptability,
and regulatory frameworks. Future research efforts should
prioritize evaluating SynCom's performance across diverse
field conditions, exploring complex interactions within the
rhizosphere, and continuously monitoring their ecological
impacts. Understanding these microbial consortia will enable
the refinement of strategies, ensuring long-term
sustainability, productivity, and resilience of agricultural
ecosystems.
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