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Synthetic microbial communities (SynCom) present a promising strategy for sustainably 
enhancing agricultural productivity and ecological resilience. This review critically discusses 
recent advancements in applying SynCom within agricultural ecosystems and highlights the 
practical benefits for economic sustainability. Plant growth-promoting (PGP) traits are 
essential for developing SynCom, as they enhance plant growth, increase nutrient uptake, 
improve stress tolerance, and support resistance to pathogens. SynCom demonstrates 
significant effectiveness as a biofertilizer, substantially improving soil health and crop 
yields through enhanced nutrient cycling and bioavailability. Its role as a biopesticide is also 
significant, as it offers an eco-friendly approach to insect pest management. The 
integration of SynCom into agricultural practices has proven to enhance plant disease 
resistance, significantly contributing to crop resilience. Moreover, SynCom plays a vital role 
in maintaining soil fertility, promoting carbon sequestration, and mitigating the impacts of 
climate change. Its applications extend to environmental remediation, where it effectively 
degrades hazardous pollutants in agricultural soils and efficiently processes lignocellulosic 
biomass, supporting sustainable biomass utilization. SynCom offers considerable 
advantages but also faces challenges, including community stability, environmental 
adaptability, and regulatory concerns. Future research efforts aim to address these 
limitations and enhance SynCom's efficacy regarding long-term agricultural sustainability. 
Our review provides valuable insights for policymakers, practitioners, and researchers to 
construct SynCom-based strategies that promote plant growth, enhance sustainable 
agriculture, and support environmental conservation. 
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1. INTRODUCTION 
Soil fertility is vital in agricultural development, 

particularly for crops, and significantly contributes to national 
development (Suntoro et al., 2024). Soil nutrients are 
essential for plant growth and productivity. Nutrients are 
divided into two categories: macronutrients and 
micronutrients. Plants require a minimum of 14 mineral 

elements for their nutrition, including the macronutrients 
nitrogen (NO3

-, NH4
+), phosphorus (H3PO4

-, HPO4
2-), potassium 

(K+), calcium (Ca2+), magnesium (Mg2+), and sulfur (SO4
2-), as 

well as the micronutrients chlorine (Cl-), boron (B(OH)4
-), iron 

(Fe2+), manganese (Mn2+), copper (Cu2+), zinc (Zn2+), nickel 
(Ni2+), and molybdenum (MoO4

2-). These essential nutrients 
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are typically sourced from the soil (White & Brown, 2010). The 
primary macronutrients essential for plant growth are 
nitrogen (N), phosphorus (P), and potassium (K), commonly 
referred to as NPK (Dhaliwal et al., 2024). Among these, N and 
P play significant roles, as they are crucial for regulating plant 
development and enhancing crop production (Dhaliwal et al., 
2024; Wahba & Zaghloul, 2024). K also plays a key role in 
water regulation, nutrient transport, and disease resistance. 
Soil microbes are diverse microorganisms, including bacteria, 
fungi, archaea, and protists, essential for maintaining soil 
health and supporting ecosystem functions. These 
microorganisms play critical roles in nutrient cycling, 
decomposition of organic matter, and soil fertility (Chen et al., 
2024; Wang et al., 2024). Plant growth-promoting bacteria 
(PGPB) are increasingly utilized in agriculture to enhance crop 
yields, reduce dependence on chemical fertilizers and 
pesticides, and improve soil health (Chowhan et al., 2023; Fan 
& Smith, 2021). SynCom involves selecting strains for specific 
purposes (Devi & Balachandar, 2022). The role of SynCom can 
effectively enhance soil ecological functions and promote 

environmental sustainability (Xu et al., 2025; Shayanthan et 
al., 2022; ).  Synthetic consortia have the potential to enhance 
crop productivity via nutrient cycle and form soil aggregation, 
leading to improved soil porosity, and effectively address 
agricultural challenges (Karkaria et al., 2021). The design and 
assembly of SynCom require a comprehensive understanding 
of microbial ecology, genetics, metabolic pathways, and 
strain-specific characteristics (Johns et al., 2016). SynCom 
construction involves identifying and integrating individual 
microbial strains based on their desirable traits and functions, 
as described by Chem (2025). Depending on specific 
agricultural purposes, SynCom can be developed from various 
sources, including natural environments, microbial culture 
collections, and gene banks (Luo et al., 2024; Zhuang et al., 

2021; Zhang et al., 2019; ). For instance, plant growth-
promoting SynComs are often sourced from environments 
exhibiting exceptional plant health, growth, or stress 
resilience (Liu et al., 2022). Similarly, SynCom derived from 
the rhizosphere of healthy plants can effectively enhance 
crop health, growth, and stress tolerance, leading to high-
yielding and disease-resistant varieties. Additionally, SynCom 
isolated from extreme environments, such as high salinity, 
drought, or contaminated soils, can significantly improve 
plant tolerance and resilience (Chaudhary et al., 2023). 
SynCom development is crucial for regulating nutrient cycles, 
fostering plant health, and maintaining ecosystem resilience. 
Therefore, this review aims to demonstrate recent 
advancements in research on the application of the synthetic 
microbial community platform in agricultural ecosystems and 
its practical benefits for economic sustainability. Practical 
insights into improving soil ecological functions through PGP 
traits are also included without the need for extensive 
investigation into the underlying scientific mechanisms.  

 

2.  Plant growth-promoting traits and their mechanisms 
influence crop productivity 
PGP traits refer to various beneficial characteristics that 

microorganisms can provide to plants, leading to enhanced 
growth, improved nutrient uptake, and increased stress 

tolerance. These traits also contribute to disease suppression 
and promote overall soil health. PGP traits can be categorized 
into direct and indirect mechanisms. Direct mechanisms 
include nutrient solubilization (P, K, Zn-solubilization, and N-
fixation), phytohormones (indole-3-acetic acid (IAA), 
cytokinins, and gibberellins (GAs), and the synthesis of 
siderophore, enhancing plant iron uptake. Indirect 
mechanisms include biocontrol activities in which 
microorganisms suppress plant pathogens by producing 
antibiotics, releasing hydrolytic enzymes, and generating 
volatile compounds such as hydrogen cyanide (HCN) ( Ünlü et 

al., 2024; Chowhan et al., 2023; Cueva-Yesquén et al., 2021;) 
(Table 1). Pseudomonas is recognized for a diverse array of 
PGP traits, which include antibiotic production, P-
solubilization, N-fixation, 1-aminocyclopropane-1-
carboxylate (ACC) deaminase activity, and phytohormone 
synthesis (Fan & Smith, 2021). Furthermore, Bacillus species 
are well-known for their abilities in N-fixation, P-
solubilization, siderophore production, and biocontrol 
activities (Chowhan et al., 2023), while Rhizobium is mainly 
associated with N-fixation in legume-rhizobia symbiosis 
(Lindström & Mousavi, 2020). A study by Ikhwan et al. (2021) 
revealed that developing a bacterial consortium with PGPB 
can enhance maize (Zea mays L.) production. Furthermore, 
Pattani et al. (2023) indicated that utilizing the PGPB 
consortia can improve the overall growth of tomatoes 
(Solanum lycopersicum L.). Similarly, Devi et al. (2018) 
demonstrated that applying these consortia can enhance 
potato (Solanum tuberosum L.) yield. Shilev et al. (2020) 
studied these consortia and found that they can improve 
spinach (Spinacia oleracea L.) production. Turino Mattos et al. 
(2023) also reported the positive effects of using these 
consortia in rice (Oryza sativa L.) cultivation. However, the 
role of soil microbial communities in ecosystem functioning 
does not always contribute positively to soil health (Chen et 
al., 2024). Various challenges inhibit their capacity to enhance 
soil quality, including limited nutrient availability, adverse 
environmental conditions (Sembiring et al., 2024), soil 
disturbances, and pathogens (Rasheela et al., 2024). 

PGP traits are crucial for microbial consortia to enhance 
plant growth, increase nutrient uptake, improve stress 
tolerance, and support resistance to pathogens. These traits 
have been extensively investigated in beneficial microbes, 
particularly in plant growth-promoting rhizobacteria (PGPR) 
and endophytes. Potential PGP traits for microbial 
applications that enhance plant growth include nutrient 
solubilization (P, K, and Zn), siderophore production, and N-
fixation. Additionally, phytohormone production involving 
IAA, cytokinins, and GAs, through ACC deaminase, plays a 
crucial role in enhancing plant growth response to the effect 
of PGPR (Jaroszuk-Ściseł et al., 2019). Biocontrol and plant 
protection traits involve the production of antibiotics such as 
iturins and bacillomycins (Dunlap et al., 2019), hydrolytic 
enzymes including chitinases, β-1,3-glucanases, proteases, 
and cellulases (Chlebek et al., 2022), HCN (Sehrawat et al., 
2022), and biosurfactant production (Jumpathong et al., 
2022). A recent study by Denaya et al. (2021) emphasized the 
potential of a SynCom composed of Citrobacter braakii, C. 
freundii, and Pseudomonas stutzeri for promoting plant growth. 
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Table 1. PGP traits and nutrient acquisition mechanisms. PGP traits are beneficial characteristics of microorganisms, especially rhizobacteria and endophytes, that enhance plant 
growth by improving nutrient acquisition, hormone regulation, stress tolerance, and pathogen suppression. Plants obtain nutrients from soil through mass flow (nutrients 
move with water), diffusion (nutrients move from high to low concentration), and root interception (direct contact with roots). 

PGP traits Nutrient acquisition mechanisms 

Phosphorus solubilization  Microorganisms solubilize phosphorus (P) through various biochemical and biological mechanisms, converting insoluble phosphorus into 
bioavailable forms that plants can absorb. These mechanisms primarily involve the secretion of organic acids and the production of phosphatase 
enzymes. Certain microorganisms produce and release organic acids into the soil, including gluconic, oxalic, citric, malic, lactic, and acetic acids. 
These acids lower the soil pH by releasing protons (H+), which create acidic conditions that promote the dissolution of insoluble phosphate 
minerals, such as tricalcium phosphate, Ca3(PO4)2. This acidification process enhances the solubility of inorganic phosphate. Additionally, these 
organic acids contain hydroxyl (-OH) and carboxyl (-COOH) groups that can chelate metal cations (Ca2+, Fe2+, Al3+) commonly associated with 
insoluble phosphate complexes. Chelating these cations helps release phosphate ions into the soil, making them more accessible to plants. 
Similarly, microorganisms can produce phosphatases and phytases, breaking down organic phosphorus compounds into inorganic phosphate. 
These organic phosphorus compounds bond with molecules such as carbon chains, proteins, nucleic acids, and phospholipids. Phosphatases 
hydrolyze various organic phosphorus compounds, while phytases target phytate (inositol hexakisphosphate), a common form of organic 
phosphorus in soil. When these organic compounds break down, they release inorganic phosphate, which is present in the free ionic forms of 
orthophosphate ions (H2PO4

-, HPO4
2-, and PO4

3-). Through enzymatic action, phosphorus is converted from organic forms into inorganic phosphate 
(orthophosphate), making it readily available for plant uptake. Bacteria such as Bacillus, Pseudomonas, Enterobacter, and Rhizobium, along with 
fungi like Aspergillus and Penicillium, as well as arbuscular mycorrhizal fungi (AMF), have been shown to solubilize phosphorus (P) effectively. 

Potassium solubilization  Although potassium (K) in soil is abundant, over 90-98% of it exists in insoluble or fixed forms that plants cannot absorb directly. Microorganisms 
can solubilize potassium from these insoluble mineral sources, including mica (XY2-3Z4O10(OH, F)2), where (X) can be K, Na, Ba, Ca, Cs, (H3O), or 
(NH4); (Y) can be Al, Mg, Fe2+, Li, Cr, Mn, V, or Zn; and (Z) can be Si, Al, Fe2+, Be, or Ti. Other sources include feldspar [(Ca, Na, K)AlSi3O8], and illite 
(KH3O).(Al, Mg, Fe)2.(Si Al)4.O10.[(OH)2(H2O)]. Certain microorganisms produce organic acids such as citric, oxalic, tartaric, gluconic, and malic acids. 
These acids lower soil pH by releasing H+ ions, further promoting the dissolution of potassium-containing minerals. The lower soil pH disrupts the 
structure of feldspar, especially K-feldspar, a K-bearing aluminosilicate mineral (KAlSi3O8). Organic acids bind to Al3+, Fe3+, Si4+, and other structural 
ions in K-bearing minerals, leading to the dissolution of the mineral matrix. Protons (H+) secreted by certain microorganisms exchange with K+ ions 
bound in these mineral matrices, causing the release of K+ ions into the soil. These processes transform structurally bound or mineral-occluded 
potassium into plant-available K+ ions.   

Zinc solubilization  In soil, a significant portion of zinc (Zn) is found in insoluble forms, including zinc carbonate (ZnCO3), zinc oxide (ZnO), zinc hydroxide (Zn(OH)2), 
and zinc phosphate (Zn3(PO4)2). These forms do not easily dissolve in water, particularly in alkaline conditions, making zinc unavailable to plants. 
In alkaline conditions, Zn2+ reacts with hydroxide (OH-), carbonate (CO3

2-), or phosphate (PO4
3-) ions to form poorly soluble precipitates. Hence, 

alkaline soils promote zinc deficiency because Zn2+ precipitates or binds tightly to soil components. Similarly, certain microorganisms can solubilize 
zinc in the soil by producing organic acids such as gluconic acid, citric acid, oxalic acid, lactic acid, malic acid, and chelating agents. These organic 
acids lower the soil pH by releasing protons (H+), increasing zinc compounds’ solubility. These acids chelate Zn2+ ions from insoluble forms such as 
ZnO, ZnCO3, Zn(OH)2, and Zn3(PO4)2. As Zn2+ is continuously chelated from insoluble forms, more Zn2+ is released. Chelation by organic acids helps 
Zn2+ reprecipitate with other anions, such as OH- or PO4

3-, keeping it in a soluble form available for plants. This process is critical in alkaline and 
calcareous soils, where zinc is commonly present but often poorly available.   
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PGP traits Nutrient acquisition mechanisms 

Nitrogen fixation  Atmospheric nitrogen (N2) has a strong triple bond, which makes it chemically inert and unavailable to most organisms. However, certain 
microorganisms can convert atmospheric nitrogen gas (N2) into ammonia (NH3) through biological nitrogen fixation (BNF). This conversion occurs 
through an enzymatic reaction catalyzed by nitrogenase. The nitrogenase enzyme complex, which consists of dinitrogenase reductase and 
dinitrogenase, promotes the reduction of inert atmospheric N2 into bioavailable ammonia (NH3). This process requires significant energy (16 ATP 
molecules to fix one N2 molecule into two NH3 molecules) and involves transferring electrons from ferredoxin or flavodoxin to dinitrogenase 
reductase, which then passes the electrons on to dinitrogenase. As a result, two molecules of ammonia (NH3) are produced from one molecule of 
N2. Once produced, ammonia (NH3) is often protonated to form ammonium (NH4

+) under soil conditions. Plants can then directly assimilate NH4
+ 

into amino acids such as glutamate and glutamine, as well as into nucleic acids and chlorophyll. 
Siderophore production Siderophores are high-affinity, low molecular-weight chelating compounds that microorganisms secrete under conditions of iron (Fe3+) limitation. 

Iron (Fe3+) is crucial for various plant processes, including chlorophyll synthesis, respiration, and enzyme function. However, Fe3+ can form insoluble 
hydroxides and oxides in aerated or alkaline soils, making it less available to plants. Microorganisms synthesize and secrete siderophores, which 
are iron-chelating molecules that bind tightly to Fe2+ and form soluble Fe2+-siderophore complexes. Plants can then absorb iron from these 
complexes through membrane-bound transport systems. 

Phytohormones  

Indole-3-acetic acid (IAA) Indole-3-acetic acid (IAA) is an auxin, a plant hormone crucial in promoting plant growth. It influences important processes such as cell division, 
elongation, and differentiation. Microorganisms produce IAA as a secondary metabolite, which helps promote cell elongation by activating H+-
ATPases. Although IAA is crucial for plant development, its effects can vary depending on the dosage, with high concentrations sometimes 
inhibiting growth. 

Cytokinins Cytokinins support plant growth through cell division, promote shoot organogenesis, delay senescence, enhance nutrient allocation, and increase 
resilience to stress. This hormone activates cyclin-dependent kinases (CDKs) and cyclins that control the transition from the G1 to the S phase of 
the cell cycle. Additionally, cytokinins upregulate the WUSCHEL (WUS) and CLAVATA (CLV) genes, crucial for maintaining stem cell populations in 
the shoot apical meristem. It also inhibits the expression of senescence-associated genes (SAGs) and supports chlorophyll synthesis by maintaining 
the activity of enzymes. Furthermore, cytokinins regulate nitrate transporter (NRT1) genes, promoting the translocation of essential nutrients (N, 
P, and K) from older to younger tissues. In addition, they induce the expression of antioxidant enzyme genes, such as superoxide dismutase and 
catalase, which enhance tolerance to drought, salinity, and extreme temperature conditions. 

Gibberellins (GAs) Gibberellins (GAs) promote stem elongation, seed germination, flowering, and fruit development. GAs enhance RNA and protein synthesis, 
promoting longitudinal growth in response to light and supporting the germination process. GAs promote cell wall loosening by upregulating genes 
associated with expansin and xyloglucan endotransglucosylase/hydrolase (XTH). Furthermore, they activate the expression of hydrolytic enzymes, 
such as α-amylase and proteases, in the aleurone layer of cereal seeds. This action helps decompose stored starch and proteins in the endosperm 
into soluble sugars and amino acids, providing essential energy and building blocks for the developing embryo. In certain plants, particularly long-
day species, GAs promote flowering by inducing the expression of floral meristem identity genes, including LEAFY (LFY) and SOC1. 

ACC deaminase Microorganisms produce 1-Aminocyclopropane-1-carboxylate (ACC) deaminase to regulate the levels of ethylene (C2H4), a stress-related plant 
hormone that can inhibit growth, especially under stress conditions. While small amounts of ethylene regulate normal growth, excessive ethylene 
can inhibit root elongation, lead to leaf yellowing and senescence, and delay seed germination. In response to abiotic or biotic stress, plants 
increase ethylene synthesis via the precursor 1-aminocyclopropane-1-carboxylic acid (ACC). The ethylene synthesis in plants follows the pathway 
by which methionine is converted to S-adenosyl methionine through SAM synthetase, S-adenosyl methionine is converted to ACC through ACC 
synthase, and ACC is converted to ethylene via ACC oxidase. In the biosynthetic pathway, ACC is the final step before ethylene synthesis. Therefore, 
ACC is referred to as the immediate precursor. Microorganisms produce ACC deaminase to break down ACC, the immediate precursor of ethylene, 
into ammonia (NH3) and α-ketobutyrate. This process reduces ethylene production and helps mitigate its negative effects on plant growth.  
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PGP traits Nutrient acquisition mechanisms 

Lipopeptide antibiotics 

Iturins and bacillomycins Iturins and bacillomycins are lipopeptide antibiotics that serve as antifungal agents, primarily produced by Bacillus species such as B. subtilis, B. 
amyloliquefaciens, and B. velezensis. These lipopeptides act as biocontrol agents, inhibiting plant pathogens and disrupting fungal cell membranes. 
Iturins and bacillomycins are inserted into fungal cell membranes through an amphiphilic structure. This insertion leads to the formation of pores 
or membrane disruption, resulting in ion leakage (including K+ and Ca2+), a loss of membrane potential, and, ultimately, cell lysis and death. 

Enzymes  

Chitinases, β-1,3-glucanases, 
proteases, and cellulases 

Certain microorganisms, particularly Bacillus, Pseudomonas, and Trichoderma, secrete lytic enzymes such as chitinases, β-1,3-glucanases, 
proteases, and cellulases. These enzymes primarily degrade components of pathogenic microbial cell walls, acting as biocontrol agents. Chitinases 
hydrolyze chitin, a major component of fungal cell walls, while β-1,3-glucanases break down β-glucans, essential for maintaining the integrity of 
the fungal cell wall. Proteases break down pathogens by hydrolytically cleaving the peptide bonds within protein molecules on the pathogen's 
surface or within its internal structures. This process reduces these proteins into smaller peptides or amino acids. As a result, proteases can 
effectively disrupt bacterial biofilms, dismantle structural components such as the cell wall or extracellular matrix, and degrade host defenses, 
including immune signaling proteins and antimicrobial peptides. Cellulases, conversely, target the exopolysaccharides (EPS) found in bacterial 
biofilms, which serve as a protective matrix surrounding bacterial cells. By hydrolyzing the structural β (1-4) glycosidic linkages within the EPS, 
cellulases degrade the biofilm, weakening the pathogen’s structural integrity and disrupting its protective layer. These enzymatic activities can 
induce the lysis of phytopathogen cells. 

Volatile compounds 

Hydrogen cyanide (HCN) Certain microorganisms produce hydrogen cyanide (HCN) as a biocontrol agent. Although HCN is toxic to plants at high concentrations, the 
amounts produced by beneficial microbes selectively target pathogens without harming the plants. Low concentrations of HCN do not harm plants 
but effectively suppress pathogens. The production of HCN is tightly regulated by microbial expression and soil conditions. HCN disrupts the 
respiratory electron transport chain in pathogenic fungi and bacteria by inhibiting cytochrome c oxidase, an essential enzyme for cellular 
respiration. This inhibition blocks ATP synthesis in these pathogens, eventually leading to energy depletion and death. 

Biofilm - Extracellular polymeric substances  

Exopolysaccharides (EPS) Exopolysaccharides (EPS) are high-molecular-weight polysaccharides secreted by microorganisms such as Bacillus, Pseudomonas, Rhizobium, and 
Azospirillum. These substances support plant growth by enhancing root-soil interactions, promoting microbial survival, and improving plant stress 
tolerance. EPS are viscous compounds rich in sugar. When microorganisms colonize plant roots, they produce EPS that forms a protective biofilm 
for the roots. The EPS molecules contain hydrophilic (water-attracting) chemical groups, allowing them to absorb and retain water molecules. This 
EPS matrix effectively holds water around the root surface, even as the soil begins to dry, maintaining root hydration, particularly during drought 
or heat stress.  
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This SynCom was developed based on the strains’ abilities 
to solubilize macronutrients and produce IAA. The findings 
suggest that applying a SynCom with these characteristics can 
significantly improve nutrient uptake, enhance systemic 
resistance against pathogens, and increase plant stress 
tolerance. Additionally, research by Kaur et al. (2022) 
identified another SynCom consisting of Erwinia sp. EU-
B2SNL1, Chryseobacterium arthrosphaerae EU-LWNA-37, and 
Pseudomonas gerardia EU-MRK-19 promote plant growth by 
improving nutrient uptake, disease resistance, and stress 
tolerance. These strains were selected based on their unique 
traits, Erwinia sp. EU-B2SNL1 as an N-fixer, C. arthrosphaerae 
EU-LWNA-37 as a P-solubilizer, and P. gerardia EU-MRK-19 as 
a K-solubilizer. The study concluded that a SynCom based on 
selected strains is more effective than applying individual 
strains. The development of SynCom utilizing PGP traits is a 

practical approach to enhancing nutrient availability in the 
soil. These beneficial effects occur through diverse 
mechanisms, such as resource competition, antimicrobial 
compound production, and induction of plant defense 
responses.  
 

3. Applications of SynCom in agricultural systems  
3.1. SynCom as biofertilizers 

Biofertilizers are natural fertilizers that utilize beneficial 
microorganisms to enhance soil fertility and support plant 
growth. They play an essential role in modern agriculture by 
improving soil health, facilitating nutrient uptake, and 
promoting sustainable farming practices (Ammar et al., 2023). 
SynCom has been developed using beneficial microorganisms 
as biofertilizers to enhance soil quality (Kabir et al., 2024).

 

 
Figure 1. Synthetic microbial communities (SynCom) function as plant growth-promoting bacteria (PGPB) by enhancing 

nutrient uptake, protecting against pathogens, and increasing resistance to environmental stress. 
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Ikhwan et al. (2021) had reported that forming a SynCom 
with PGPB can enhance maize (Z. mays L.) production. The 
findings indicated that a specific PGPB formula could improve 
the yield for specific Z. mays L. varieties. For instance, 
consortia with endophytic bacteria isolates, Azospirillum sp., 
cellulolytic, and ligninolytic were the most effective 
formulation for Pertiwi-3 cultivation. In contrast, PGPB 
consortia with endophytic bacteria isolates, cellulolytic, 
ligninolytic, Acetobacter sp., and Azospirillum sp. produced 
higher yields for Talenta and Bisma. SynCom solubilizes 
essential nutrients and mobilizes other macro- and 
micronutrients to enhance nutrient uptake, protect against 
pathogens, and increase resistance to environmental stress 
(Fig. 1). Interactions between host plants and SynCom involve 
dynamic signaling and metabolic exchanges. Host plants 
release organic compounds (sugars, amino acids, and organic 
acids) through their roots, which attract SynCom. In response, 
SynCom secretes signaling molecules recognized by the plant 
roots, initiating colonization on the root surface or within root 
tissues. This interaction enhances nutrient transfer efficiency 
and protects roots from pathogenic microorganisms through 
biofilm formation, significantly influencing plant growth and 
overall health. This enhanced nutrient bioavailability directly 
promotes plant growth and productivity (Kaur et al., 2022) 

Furthermore, Santoyo et al. (2021) concluded that 
SynCom can produce phytohormones, including auxins, 
cytokinins, gibberellins, ethylene, and abscisic acid, which are 
crucial regulators of plant growth, root development, and 
overall yield enhancement. Additionally, these microbial 
consortia can produce siderophores, antibiotics, and volatile 
organic compounds that protect plants from pathogens, 
reducing disease incidence and enhancing biocontrol efficacy 
(Hansen et al., 2024; Jing et al., 2024; Misra et al., 2024). 
Previous studies showed that SynCom secretes phosphatases, 
cellulases, and proteases, which decompose organic matter 

and release essential nutrients for plant uptake. This 
enzymatic activity plays a key role in sustainable agriculture 
and soil health (Chiaranunt & White, 2023). These substances 
enhance nutrient availability and root uptake, substantially 
enhancing plant growth. For instance, P-solubilizing bacteria 
can convert insoluble phosphorus compounds into soluble 
forms readily available for plant uptake (Zhou et al., 2024). 
Phosphate-solubilizing bacteria (PSBs) are crucial in 
enhancing phosphorus availability for plant uptake. They 
produce organic acids that chelate, release inorganic 
phosphorus, and secrete enzymes such as phosphatases to 
break down organic phosphorus. This process increases the 
accessibility of phosphorus in the soil, promoting overall plant 
growth and yield by ensuring that this essential nutrient is 
readily available for plants to absorb (Fig. 2). Plants can 
enhance their growth, cell division, and energy production 
with increased phosphorus availability, as this essential 
macronutrient plays a crucial role in these processes. PSBs 
function as biofertilizers, providing an environmentally 
friendly alternative to chemical fertilizers. This approach not 
only reduces soil pollution but also promotes ecological 
balance. 

 
3.2.  SynCom as biopesticides and biological control of 

plant disease 
Integrating beneficial insecticidal bacteria can improve 

insect pest management strategies. Selected microbial strains 
exhibit potential insecticidal properties within SynCom, 
offering potential novel biopesticides. Utilizing multiple 
modes of action through various microbial agents can 
develop biopesticides that operate more efficiently and 
provide broad-spectrum activity. Integrating different 
bacterial strains with diverse action mechanisms can lead to 
stronger and more effective biocontrol than single strains.  

 

 
Figure 2. Phosphate-solubilizing bacteria (PSBs) enhance phosphorus availability for plants by producing organic acids that 
release inorganic phosphorus and secrete enzymes like phosphatases to break down organic phosphorus. This increases 

phosphorus accessibility in the soil, promoting plant growth and yield 
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A recent study by Chem et al. (2025) demonstrated that a 
combination of four promising non-Bt (beyond Bacillus 
thuringiensis) bacterial strains, Mesobacillus thioparans CC8, 
Bacillus mobilis CC13, Bacillus subtilis CC18, and 
Chromobacterium rhizoryzae 4C2, was more effective against 
the diamondback moth, Plutella xylostella L., compared to 
individual applications. These insecticidal bacteria produce 
endotoxins that can kill insect larvae (Pathma et al., 2021; 
Seenivasagan & Babalola, 2021). Tan et al. (2021) 
demonstrate that mixing two fungi, Paranosema locustae and 
Beauveria bassiana, effectively manages grasshopper 
(Locusta migratoria) populations. P. locustae is commonly 
used in China as a biological control agent for grasshoppers. 
Furthermore, the combined application of P. locustae and B. 
bassiana is more effective against L. migratoria than using 
either fungus alone. Similarly, a recent case study by Spescha 
et al. (2023) studied SynCom to control the cabbage maggot 
(Delia radicum) (Diptera: Anthomyiidae), a well-known pest 
that causes significant damage to Brassicaceae crops. SynCom 
was developed by combining Pseudomonas chlororaphis 
(bacteria), Steinernema feltiae (nematodes), and 
Metarhizium brunneum (fungus). P. chlororaphis was selected 
for its proven effectiveness against insect pests and fungal 
plant diseases, while S. feltiae and M. brunneum have a long 
history of commercial use against various pest insects. The 
study’s results indicated that SynCom significantly reduced 
pest survival rates in greenhouse experiments. These 
microbial consortia perform through various mechanisms, 
including insecticidal proteins such as Cry, Cyt, and Vip 
proteins, which disrupt insect digestive systems and 
ultimately lead to their death.  

Olanrewaju and Babalola (2019) studied the application of 
a SynCom composed of B. subtilis A1, Pseudomonas sp. A18, 
Pseudomonas sp. A29, S. globisporus NWU4, S. griseoflavus 
NWU14, and S. heliomycini NWU198 to control Fusarium 
graminearum. Their research demonstrated that SynCom 
produced antimicrobial compounds that effectively inhibited 
the growth of F. graminearum. B. subtilis is well-known for 
producing lipopeptides, including iturin, surfactin, and 
fengycin, which exhibit antifungal properties (Kaspar et al., 
2019). Likewise, Streptomyces species are recognized for 
producing natural antibiotics, including antifungal 
compounds (Donald et al., 2022). Pseudomonas strains also 
generate antimicrobial compounds such as phenazines, 
pyoluteorin, pyrrolnitrin, and 2,4-diacetyl phloroglucinol, 
which are antifungal effects (Fischer et al., 2013). Antifungal 
lipopeptides such as iturin, surfactin, and fengycin, produced 
by these microbes, can effectively inhibit fungal growth by 
damaging cell membranes and causing cell lysis. These 
findings highlight the potential of the SynCom approach for 
controlling fungal plant pathogens.  

Utilizing SynCom offers a sustainable solution for 
biopesticides and the biological control of plant diseases. 
SynCom provides a more stable and effective alternative to 
single-strain biocontrol agents. Approaches based on SynCom 
support integrated pest management (IPM) principles by 
reducing reliance on chemical pesticides, minimizing 
environmental pollution, decreasing pesticide resistance, and 
limiting adverse effects on non-target organisms. This 

method provides eco-friendly, effective, and resilient 
biopesticide solutions.  

 

3.3. SynCom applications in disease resistance and 
stress tolerance   

SynCom can protect plants from various stressors, 
including biotic and abiotic. The biotic stressors include 
pathogens (fungi, bacteria, and viruses), insects, and weeds, 
which can infect plants, feed on plant tissues, and compete 
for essential resources, adversely affecting plant health and 
productivity. On the other hand, abiotic stressors refer to the 
negative impacts of non-living environmental factors, 
including extreme temperatures, drought, salinity, nutrient 
deficiencies, and metal toxicity. SynCom represents a 
promising microbial consortium that not only enhances plant 
disease resistance but also improves stress tolerance (de 
Souza et al., 2020). SynCom can secrete hydrolytic enzymes, 
including chitinases, glucanases, and proteases, which target 
and break down the cell walls of fungal pathogens, enhancing 
plants' disease resistance (Wang et al., 2021). Additionally, 
SynCom can solubilize nutrients and produce phytohormones 
that promote plant health and resilience to stress, ultimately 
reducing their susceptibility to diseases (Mukherjee et al., 
2021).   

Bacillus and Pseudomonas have been widely utilized in 
sustainable agriculture to enhance soil health, improve crop 
yields, increase plant tolerance to drought, cold, and salinity 
stresses, and provide effective biocontrol against plant 

pathogens (Devi et al., 2025; Singh et al., 2025; Kaur et al., 
2024; Raza et al., 2024; ; Swiontek Brzezinska et al., 2022; 
Vega-Celedón et al., 2021). They assist plants in tolerating 
stress and safeguarding them from pathogens. These 
organisms produce compounds that combat harmful 
microbes, including antibiotics, lytic enzymes, and 
biosurfactants, while also activating the plant's defense 
mechanisms, such as induced systemic resistance (ISR). 
Furthermore, they enable plants to better withstand drought, 
cold, and salinity by generating osmoprotectants and 
exopolysaccharides (EPS) (Singh et al., 2015). Ultimately, 
these beneficial interactions are essential for their capacity to 
form biofilms and colonize plant roots. These diverse 
microbial communities perform essential ecological 
functions, including nutrient cycling and N-fixation, producing 
plant growth hormones, and bolstering plant defense 
mechanisms. This approach offers an environmentally 
friendly alternative to chemical pesticides.  

Ma et al. (2023) investigated a SynCom composed of 
Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. HB9, 
Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces 
sp. MB6, and Bradyrhizobium sp. MB15 has shown 
effectiveness in enhancing disease resistance against the 
plant pathogen F. oxysporum. This SynCom was developed 
based on its ability to fix nitrogen and P-solubilization and 
produce chitinase, cellulase, and xylanase. The study 
indicated that SynCom can significantly improve plant health, 
promote disease resistance, and enhance growth efficiency. A 
recent study by Khan et al. (2022) explored the potential of 
SynCom to promote wheat growth under salinity stress, using 
NaCl concentrations to determine strains exhibiting tolerance 
to salinity.
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Table 2. The application of SynCom in sustainable agriculture contributes to improved soil health, increased crop yields, and enhanced plant resilience to stresses such as drought, 
cold, and salinity. Designing microbial consortia with specific PGP traits and enzymatic activities can adopt a strategic and promising approach to enhancing ecological 
functions in sustainable agriculture 

SynCom Desired function Plant model species Microbial construction strategies and results-based experiments Reference 

Enterobacter ludwigii EU-BEN-22, 
Micrococcus indicus EU-BRP-6, 
Pseudomonas gessardii EU-BRK-55 

Improving soil health 
and crop yields 

Solanum melongena L. The isolated bacteria were assessed for N-fixation, P-solubilization, 
and K-solubilization. Microbial interactions can improve plant growth 
metrics (root and shoot length, biomass) and physiological parameters 
(chlorophyll, carotenoids, total soluble sugars, and phenolic content). 

Kaur et al. (2024) 

Claroideoglomus claroideum, 
Naganishia albida, Burkholderia 
caledonica 

Helping plants 
tolerate drought 
stress 

Fragaria x ananassa Three types of arbuscular mycorrhizal fungi (AMF), three types of plant 
growth-promoting rhizobacteria (PGPR), and three types of plant 
growth-promoting yeasts (PGPY) were chosen for their potential to 
enhance plant growth under environmental stress. This combination 
led to improvements in biomass, relative water content, fruit quantity, 
photosynthetic rate, transpiration, stomatal conductance, and the 
quantum yield of photosystem II. Additionally, it increased the 
concentrations of N, P, and K and enhanced antioxidant activities and 
chlorophyll content.  

Pérez-Moncada 
et al. (2024) 

Serratia surfactantfaciens EU-
C3SY2, Serratia marcescens EU-
D1RNL1, Serratia 
nematodiphila EU-D2SRY4, Erwinia 
persicina EU-B1RT3.1, Serratia sp. 
EU-C1RK1 

Enhancing the 
growth of the oats 
crop 

Avena sativa L. Isolated strains were evaluated for various PGP traits, including P, K, 
Zn, and Se solubilization, and the production of siderophores, NH3, IAA, 
HCN, and N-fixation. The consortium can enhance oat plants' growth 
and physiological parameters more effectively than other developed 
microbial consortia, controls, and agrochemical fertilizers. 

Devi et al. (2024) 

Pseudomonas sp. EU-C3ST.R1, 
Micrococcus indicus IARI-JR-44, 
Bacillus horikoshii IARI-S-45 

Enhancing the 
growth of the cereal 
crop 

Zea mays L. Bacterial strains were assessed for N-fixation, P, and K solubilization. 
The combination of strains can enhance plant height, biomass, and 
their physiological characteristics, including chlorophyll, carotenoids, 
flavonoids, phenolics, and total soluble sugar content. 

Devi et al. (2025) 

Trichoderma atrobruneum 15F, 
Pseudomonas sp. 2B, Bacillus 
amyloliquefaciens 9B, Bacillus 
velezensis 32B 

Antagonistic activity 
against Fusarium 
oxysporum f. sp. 
cumini (Foc) 

Cuminum cyminum Bacterial, actinomycete, and fungal isolates were evaluated for their 
antagonistic activity against Foc and their tolerance to various stress 
conditions such as temperature, pH, salinity, and moisture. The study 
also assessed the production of several metabolites, including 
siderophores, HCN, NH3, IAA, the solubilization of P and Zn, and the 
activity of hydrolytic enzymes, such as chitinase, β-1,3-glucanase, 
cellulase, amylase, lipase, protease, and chitosanase. This microbial 
consortium can enhance biomass and yield, improve disease 
resistance, and increase the production of secondary metabolites and 
antioxidant defense enzymes. Furthermore, it can help reduce 
electrolyte leakage, increase chlorophyll and carotenoid content, and 
contribute positively to plant height, dry weight, and seed yield. 

Singh et al. 
(2025) 
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SynCom Desired function Plant model species Microbial construction strategies and results-based experiments Reference 

Burkholderia sp. UWIGT-83, 
Burkholderia sp. UWIGT-120 

Helping plants 
tolerate drought 
stress 

Capsicum chinense  Rhizobacteria were evaluated for their ability to produce ACC-
deaminase under drought stress conditions, along with PGP traits such 
as P solubilization, NH3 production, siderophore synthesis, starch 
hydrolysis, and IAA production. The rhizobacteria consortium can 
improve germination and growth under drought stress. 

Thomas-Barry et 
al. (2024) 

Bacillus subtilis IS1, Bacillus 
amyloliquifaciens IS6, Bacillus fortis 
IS7 

Antagonistic activity 
against Fusarium 
oxysporum f. sp. pisi 
(Fop) 

Pisum sativum Rhizospheric bacterial strains were assessed for their antagonistic 
activity against Fop. Combining these rhizospheric bacterial strains can 
help recover plants from pathogenic infections, reduce plant damage 
from diseases, and promote growth. 

Raza et al. (2024) 

Pseudomonas sp. TmR5a, 
Curtobacterium sp. BmP22c 

Helping plants 
tolerate cold stress 

Solanum 
lycopersicum L. 

Bacterial strains were assessed for their ability to produce auxins, P-
solubilization, nifH and acdS genes, and antimicrobial activity against 
phytopathogenic bacteria. A bacterial consortium can enhance tomato 
plant growth under normal and cold stress conditions.  

Vega-Celedón et 
al. (2021) 

Bacillus sp., Delftia sp., 
Enterobacter sp., 
Achromobacter sp. 

Mitigation of salinity 
stress 

Solanum 
lycopersicum L. 

Halo-tolerant rhizobacterial strains were selected for their ability to 
solubilize P and produce siderophores, NH3, and IAA. This consortium 
can enhance growth parameters, including leaf count, shoot and root 
length, dry weight, the number of secondary roots, and chlorophyll 
content, even in saline soil conditions. 

Kapadia et al. 
(2021) 

Pseudomonas sp. B14, 
Sphingobacterium sp. B16, 
Microbacterium sp. B19 

Helping plants 
tolerate salinity 
stress 

Brassica napus L. Rhizobacteria were assessed for IAA production, ACC deaminase 
activity, P-solubilization, siderophore production, SA production, NH3 
production, HCN production, chitinase production, 1,3-β-glucanase 
activity, antifungal activity, and compatibility assays. The 
rhizobacterial consortium demonstrated the ability to increase the 
number of live leaves, shoot length, and chlorophyll content.  

Swiontek 
Brzezinska et al. 
(2022) 
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The findings revealed that a SynCom combination of 
Ensifer adhaerens strain BK-30, P. fluorescens strain SN5, and 
B. megaterium strain SN15 significantly enhanced wheat 
growth and yield in saline conditions. A study by Sembiring et 
al. (2024) identified bacterial strains isolated from saline 
vegetation types-mangrove forests, grasslands, and oil palm 
plantations. The soil samples were analyzed, and ten bacterial 
species were identified, including biofilm-forming species: P. 
aeruginosa, B. gladioli, E. cloacae, B. ciceri, A. xylosoxidans, P. 
flexa, and E. quasiroggenkampii. These biofilm formations 
enhanced and stabilized the availability of N+, P2+, and K+, 
potentially be utilized for promoting plant growth under 
salinity environments.  

Designing SynCom based on PGP traits and enzymatic 
activities presents a strategic and promising approach to 
enhancing plant disease resistance and stress tolerance 
(Table 2). These characteristics facilitate the development of 
SynCom, which can protect plants by reducing pathogen 
viability and infection rates. It is also used in treating plant 
stress conditions. Biofilm formation and endophytic 
colonization ability are essential for root colonization and 
plant-microbe interaction traits. In vitro assays, greenhouse 
or pot trials, and molecular studies are recommended for 
evaluating the effectiveness of the constructed microbial 
consortium. Hence, developing a SynCom incorporating these 
PGP traits and their associated enzymatic activities has great 
potential for sustainable agriculture (Chem, 2025).  

 

3.4. SynCom in soil fertility and carbon sequestration 
The significance of SynCom in nutrient cycling and organic 

matter decomposition is necessary for promoting plant 
growth and development (El Hamss et al., 2023; Kumar & 
Verma, 2019). A study by Lyu et al. (2024) reveals that 
SynCom can effectively break down organic matter and 
provide essential nutrients to plants. Recent reports also 
indicate that SynCom has successfully produced cellulases, 
hemicellulases, and lignin-degrading enzymes to decompose 
plant matter, ultimately improving soil fertility and enhancing 
carbon sequestration (Bombardi et al., 2024; Vincze et al., 
2024). In the decomposition of organic matter, microbes 
break down complex compounds, releasing simpler 
substances such as glucose. This process contributes to the 
formation of soil organic matter (SOM). The activity of these 
microbes, along with the resulting SOM, plays a crucial role in 
providing energy and carbon necessary for microbial growth 
and survival. Additionally, SOM serves as a reservoir of 
essential nutrients for plant growth and significantly 
influences soil health and fertility.  SynCom produces EPS, 
stabilizes soil aggregates, protects organic carbon, and 
facilitates long-term storage (Vandana et al., 2023). Through 
the breakdown of organic matter, SynCom promotes the 
stabilization of a significant portion of this material in the soil, 
enhancing soil health. This stabilization process occurs over 
extended periods and is vital for maintaining soil quality and 
fertility. 

Kaur et al. (2022) conducted a SynCom study to improve 
soil health and crop productivity. The SynCom was designed 
based on the PGP traits. These traits included IAA production, 
P-solubilization, N-fixation, biocontrol properties, and plant 

growth-promoting effects. The findings of the study revealed 
that SynCom, which included Arthrobacter sp., Enterobacter 
sp., Brevibacterium sp., and Plantibacter sp., led to a 
significant enhancement in soil nitrate availability by 55%, 
germination rates by 14.3%, plant height by 7.4%, and shoot 
biomass by 5.4%. These results highlight the potential of 
SynCom to improve soil fertility for sustainable agriculture. 
Furthermore, a recent study conducted by Raklami et al. 
(2019) exhibited the effectiveness of utilizing plant PGPR and 
arbuscular mycorrhizal fungi (AMF) as a SynCom to enhance 
crop nutrition, productivity, and soil fertility. The study 
evaluated various rhizobacterial strains to determine their 
capabilities in solubilizing P, K, and N-fixation as well as their 
ability to generate siderophores, EPS, IAA, and HCN. The AMF 
were assessed for the frequency of mycorrhizal infection in 
roots before their introduction into the SynCom. The research 
combined two PGPR strains, Acinetobacter sp. BS17 and 
Rahnella aquatilis PGP27, along with two rhizobia, Ensifer 
meliloti RhOF4 and E. meliloti RhOF155. The selected AMF 
included Glomus sp., Sclerocystis sp., and Acaulospora sp. 
Results indicated that SynCom inoculation showed significant 
increases in the shoot and root dry weight of Vicia faba L., 
along with an enhancement in leaf number by 130%, 200%, 
and 78%, respectively. Furthermore, mineral analyses 
demonstrated that the application of SynCom improved soil 
nutrient content, resulting in higher levels of N+, P2+, Ca2+, K+, 
and Na+ and increased sugar and protein content. The 
construction of SynCom, which utilizes PGP traits, has been 
designed to support sustainable agriculture. These PGP traits 
include solubilization of P/K/Zn, siderophore production, 
auxins, and EPS. Screening SynCom based on these traits can 
provide a bacterial consortium that can effectively enhance 
nutrient availability, improving plant growth. Hence, 
designing SynCom using PGP traits is a crucial strategy in 
modern agriculture to enhance productivity in an 
environmentally sustainable manner. 

 

3.5. SynCom in bioremediation of hazardous pollutants 
SynCom has recently gained significant attention as a 

promising approach to addressing pesticide residue 
degradation (Lü et al., 2024; Zhang & Zhang, 2022). These 
bacterial consortia utilize diverse mechanisms to transform 
hazardous pollutants into less harmful substances (Pang et 

al., 2023; Di Giulio et al., 2020; ). SynCom possesses unique 
metabolic pathways capable of breaking down contaminants 
through enzymatic action. Enzymes produced by these 
consortia detoxify pollutants, converting them into non-toxic 
byproducts, improving environmental quality and soil health 
(Chem, 2025). Among these enzymes, hydrolases and 
oxidoreductases play crucial roles. Hydrolases degrade 
organophosphate pesticides through hydrolysis, converting 
them into less hazardous byproducts (Bhatt et al., 2021). On 
the other hand, oxidoreductases convert organic pesticides 
through oxidation-reduction reactions into friendly molecules 
for plants (Alneyadi et al., 2018). Additionally, certain SynCom 
strains produce dehalogenase enzymes capable of effectively 
removing halogen atoms, such as chlorine, from 
organochlorine pesticides (Buryska et al., 2018). This 
enzymatic activity significantly reduces toxicity and enhances 
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the susceptibility of pesticide molecules to further 
degradation processes.  

Liu et al. (2022) developed a SynCom consisting of 
Rhodococcus sp. T3-1, Delftia sp. T3-6, and Sphingobium sp. 
MEA3-1, which could degrade acetochlor by 97.81%. A recent 
study by Malla et al. (2023) explored a SynCom of L. 
plantarum JDARSH, L. rhamnosus ARJD, and B. shackletonii 
APMAM for pesticide (chlorpyrifos, cypermethrin, and 
glyphosate) degradation. SynCom achieved degradation rates 
of 94.93% for chlorpyrifos, 89.4% for cypermethrin, and 
87.01% for glyphosate. Recent research by Shetty et al. (2023) 
indicates that hazardous pollutants have unique structures 
and varying toxicity levels. Effective degradation requires 
specific strains with significant metabolic pathways (Zhang & 
Zhang, 2022). Developing a potential SynCom relies on 
various factors, such as enzymatic degradation efficiency, pH, 
temperature, and pollutant concentration. Focusing on these 
factors allows us to identify potential SynCom that can 
effectively degrade hazardous pollutants, promoting the 
discovery of novel SynCom that improve degradation 
performance. Furthermore, these strategies can easily 
develop and assemble SynCom efficiently, even in irregular 
conditions or with various pollutants. 

 

3.6. SynCom in the degradation of lignocellulose for 
sustainable biomass  

Cellulose, hemicellulose, and lignin are the primary 
components of plant cell walls, presenting significant 
challenges for microbial degradation due to their complex 
structures. The aromatic nature of lignin makes it particularly 
resistant to degradation, while the presence of hemicellulose 
and lignin restricts microbial access to cellulose, reducing 
breakdown efficiency (Wu et al., 2022; Shikata et al., 2018; ). 
Nevertheless, recent studies by Zhang et al. (2023) have 
demonstrated that various microorganisms can degrade 
these polymers effectively. SynCom has emerged as a 
promising agent for efficiently converting lignocellulosic 
residues into valuable products (Lin, 2022). Through 
fermentation processes, SynCom employs specific enzymatic 
activities to degrade lignocellulosic materials, including 
cellulose, hemicellulose, and lignin, into simpler sugars. This 
enzymatic conversion is essential for the production of 
valuable bioproducts, such as biofuels (e.g., bioethanol and 
biobutanol), chemicals like hydrogen, biosurfactants, bio-
based polymers, nutrients, and other commercially important 
compounds, supporting the sustainable utilization of biomass 
(Chem, 2025). 

According to Lin et al. (2024), SynCom transforms 
agricultural residues into valuable bioproducts by mixing 
enzymatic breakdown with microbial fermentation. Initially, 
polymers are converted into simpler molecules that serve as 
substrates for microorganisms. During fermentation, 
cellulases break down cellulose into glucose units, 
hemicellulases degrade hemicellulose into sugar monomers, 
and ligninases facilitate lignin decomposition (Nargotra et al., 
2023). For instance, Zheng et al. (2020) conducted a study on 
rice straw degradation utilizing a SynCom designed based on 
the degradation characteristics of specific microorganisms 
and lignocellulose-degrading enzymes. A SynCom of 
Parabacteroides, Alcaligenes, Lysinibacillus, 

Sphingobacterium, and Clostridium achieved efficient 
degradation rates of rice straw, breaking down cellulose 
(71.7%), hemicelluloses (65.6%), and lignin (12.5%). The 
fermentation process resulted in the production of acetic acid 
and butyric acid. Recently, Gad et al. (2024) investigated 86 
bacterial isolates to evaluate their ability to produce 
endoglucanase, exoglucanases, and β-glucosidase for the 
degradation of cellulose. The MC29 (C. uda and P. jinjuensis) 
and MC31 (C. uda and P. citronellolis) SynComs exhibited the 
highest cellulose degradation potential, with MC31 achieving 
46.15% and MC29 reaching 43.76% (Gad et al., 2024). Utilizing 
SynCom to break down cellulose, hemicellulose, and lignin 
into valuable products for sustainable development results in 
the innovation of sustainable biofuels and biochemicals. 
Nevertheless, several challenges exist, including the complex 
structure of lignocellulose and the necessity to identify and 
optimize high-activity microbial strains alongside their 
enzymes. Advanced technologies such as genomics, synthetic 
biology, and machine learning play a vital role in enhancing 
the efficiency of microbial degradation and advancing the 
industrial applications of lignocellulose utilization.   

 

4. Challenges and limitations of the application of 
SynCom 
SynCom has been developed to address agricultural 

challenges and enhance sustainable agricultural practices. 
Despite their potential benefits, their applications may also 
lead to unintended adverse effects. While SynCom can 
effectively enhance plant growth, reduce dependency on 
chemical inputs, and improve disease resistance, translating 
laboratory results into practical field applications remains 
challenging (Chem, 2025). Several factors influence their 
effectiveness, including interactions with indigenous soil 
microbes, variations in soil types, and diverse climate 
conditions. The development and application of SynCom can 
be more cost-effective than conventional agricultural inputs 
(Tariq et al., 2025), making their efficient utilization critical for 
competing with chemical fertilizers and pesticides. Moreover, 
creating effective SynCom requires an in-depth 
understanding of microbial ecology, plant-microbe 
interactions, systems biology, crop physiology, and 
environmental conditions (Chem, 2025). Furthermore, some 
SynCom strains may produce inhibitory substances that could 
negatively affect other community members (Wang et al., 
2022). Additionally, the introduced SynCom can become 
dominant within microbial communities, potentially 

disrupting ecosystem balance (Dobrzyński et al., 2025; 
Afanador-Barajas et al., 2021). Such disruptions can alter 
nutrient cycling, impacting plant nutrient uptake and soil 
health (Korneykova et al., 2024). While SynCom might 
effectively suppress pathogens, it could also negatively affect 
plant health and crop yields if improperly designed or applied. 
Hence, careful design and thorough testing of SynCom are 
essential to maximize beneficial microbial interactions, 
enhance plant health, and mitigate potential risks. 

 

5. Conclusions and future perspectives 
Synthetic microbial communities (SynCom) represent an 

innovative and effective strategy for enhancing ecological 
functions and advancing sustainable agricultural practices. 
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SynCom offers a promising alternative to conventional 
agricultural inputs by optimizing plant health, resilience, and 
productivity, significantly reducing reliance on chemical 
fertilizers and pesticides, mitigating environmental impacts, 
and helping crops adapt to climate change. Despite their 
substantial potential, successfully integrating SynCom into 
agricultural systems requires addressing critical challenges, 
including community stability, environmental adaptability, 
and regulatory frameworks. Future research efforts should 
prioritize evaluating SynCom's performance across diverse 
field conditions, exploring complex interactions within the 
rhizosphere, and continuously monitoring their ecological 
impacts. Understanding these microbial consortia will enable 
the refinement of strategies, ensuring long-term 
sustainability, productivity, and resilience of agricultural 
ecosystems.  
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