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The potassium (K) Quantity-Intensity (Q-1) relationship results in important parameters,
including the activity ratio of potassium at equilibrium (AReX), which indicates potassium
availability in soil. Experiments to observe soil Q- K relationship parameters are often
complex, time-consuming, and do not include environmental variables. This research aims
to model ARe" using a machine learning (ML) approach. ML models applied are Random
Forest (RF), Cubist, and Support Vector Machine (SVM) as the primary approaches, with
Multiple Linear Regression (MLR) serving as a baseline. The dataset was derived from sixty-
one observation points in Brebes, Central Java. The predictors were pH, organic carbon,
clay, cation exchange capacity (CEC), exchangeable cations (Exc-Ca, Mg, K, Na), water
soluble K, available K, K saturation, potential K, non-exchangeable K (NE-K), elevation, and
slope. The response variable was the AReX. Variable selection was performed using Pearson
correlation to eliminate highly correlated predictors and reduce multicollinearity. Exactly
75% of the data was utilized as the training set and 25% as the test set. Three metrics, i.e.,
MAE, RMSE, and R?%, were used in model evaluation. The results showed that the Cubist
model could predict AReX with high accuracy (R?=0.9437) and low RMSE (0.5701) and MAE
(0.3514). Based on the Cubist model, Exc-K, Exc-Mg, CEC, and Exc-Ca were the most
important variables for predicting AReX. This model can be employed to support site-
specific fertilizer recommendation strategies. To improve the performance of the model,
it is necessary to add other predictor variables (e.g., soil physical properties, clay minerals,
rainfall, temperature and soil moisture).
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1. INTRODUCTION

The dynamics of Potassium (K) in soils are affected by its
interactions with calcium (Ca) and magnesium (Mg).
Understanding of soil K dynamics can be seen from the
thermodynamic Quantity-Intensity (Q-l) K relationship
(Beckett, 1964). The Q-I K relationship results in important
parameters, including the activity ratio of K at equilibrium
(AReX). AReX is the activity ratio of K in soil solution at
equilibrium (AK=0). The activity ratio of K is calculated by
dividing the activity of K by the square root of the combined
activities of Ca and Mg. This value reflects the intensity of K
availability by considering the influence of Ca and Mg, which
can compete with K in the soil solution. ARe* tends to rise with
higher levels of K concentration in the soil solution (Ajiboye et
al., 2015; Al-Hamandi et al., 2019; Bilias & Barbayiannis, 2019;
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Lalitha & Dhakshinamoorthy, 2015; Lumbanraja et al., 2020;
Zhu et al., 2020). Recent research by Nadalia et al. (2024)
observed variations in AReX in Brebes farmland soils. The
findings suggest that K is predominantly adsorbed at edge
positions of 2:1 clay mineral, which contributes to efficient K
release during depletion. However, farmers in the Brebes
regency study area typically apply synthetic inorganic K
fertilizer at 150 kg/ha K,0O, exceeding the recommended
amount for shallot plants (Balittanah, 2021). The excessive
use of fertilizer has an impact on the accumulation of K
residues in the soil. This is supported by the results of Muliana
et al. (2018), who found that K extracted using 25% HCI in
several shallot cultivation areas averaged of 55 mg/100 g KO,
a level classified as high. Thus, assessing K nutrient availability
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in these intensively managed shallot cultivation soils is crucial
for optimizing fertilizer application and enhancing nutrient
management efficiency.

Experiments to observe soil Q-I K relationship parameters
are often complex, costly, and time-consuming. Additionally,
Q-1 K relationship parameters have not yet incorporated
environmental variables. Controlling environment, such as
climate and topography data, brings a better understanding
on therelationship between environmental conditions as well
as soil nutrients, revealing gradual changes through both
linear and nonlinear associations. As a result, there is an
urgent demand for faster and more accurate methods to
predict soil nutrients, minimize nutrient losses, and improve
the efficiency of fertilizer management (Song et al., 2018).

Survey of the literature, however, indicates that Q-
studies are yet to be intertwined with machine learning (ML)
as a modern data extraction. Currently, linear regression
models, particularly Multiple Linear Regression (MLR), are
frequently utilized to examine, interpret, and forecast various
soil science data (Rossiter, 2018; Sharma et al., 2015). The use
of ML in soil science investigations has also been progressing
(Li et al., 2022; Padarian et al., 2020; Rossiter, 2018; Wang et
al., 2023). Geostatistical methods for spatial interpolation are
widely used in nutrient assessment research. Despite
extensive testing, these approaches often struggle to capture
the relationship between nutrients and their environmental
context. This limitation has encouraged the development of
ML-based methods. However, they have mainly focused on
nutrients other than K. Machine learning models can
effectively process and identify patterns and handle
multicollinearity, heteroscedasticity, and nonlinear
relationship problems (Chen et al., 2019; Feng et al., 2019;
Padarian et al., 2020). Typically, ML models have at least one
parameter requiring adjustment, which should be calibrated
from predictive estimates of errors. Random Forest (RF)
model works effectively with minimal tuning. Probst et al.
(2019), for instance, proved that RF tuning and improved
regression tree models can optimize predictive results.
Adjustments, however, should be cautiously applied as the
models are prone to overfitting (LieR et al., 2016). Li et al.
(2014) research presented a model for evaluating soil
nutrients using support vector machines (SVYM) and MLR. In
the study, independent variables were the content of the
organic matter, total nitrogen, available potassium, and
available phosphorus. The study's results indicated that the
SVM algorithm produced an average accuracy of 77.87%,
while the MLR algorithm reached 83.00%. These results
provide information that SVM can effectively predict nutrient
content in the soil. In addition, the Cubist model for soil
organic carbon estimation showed the best performance
compared to a simpler model, namely multivariate linear
regression, and was easier to interpret than the artificial
neural network (ANN) model (John et al., 2020; John et al.,,
2021). Covariates or environmental variables serve as
predictors in machine learning models. These covariates can
explain the underlying physical and chemical processes that
drive spatial variability in soil characteristics. The most
common covariates are soil properties, average annual
rainfall (long term), temperature, remote sensing imagery
(e.g., vegetation index obtained from satellite imagery),
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elevation, and terrain-related metrics (e.g., slope, local
curvature, topographic wetness index) (Gomes et al., 2019;
Szatmari et al., 2019).

This study is the first to apply ML algorithms (RF, Cubist,
and SVM) to model AReX based on soil properties and
environmental variables. Although past studies have explored
both linear regression and ML applications for general
nutrient prediction, none has specifically modeled the activity
ratio of K (AReX) using ML algorithms. The models also
generate variable importance that help identity key factors
influencing AReX. Soil properties and environmental factors
that potentially influence AReX include exchangeable K, Ca,
Mg, Na, cation exchange capacity (CEC), clay content, organic
carbon, soil pH, non-exchangeable K, elevation, and slope.
The resulting variables importance can subsequently be used
to predict AReX through ML models. Therefore, this research
aims to model ARe® using a ML approach and assess the
performance of ML-based approaches in predicting ARe®
within cultivated lands of Brebes, Central Java. The ML
approach can help assess soil nutrients, including ARe*, which
can be employed to support site-specific fertilizer
recommendation strategies to optimize K management.

2. MATERIAL AND METHODS
2.1. Soil characteristic analysis

This study was conducted on agricultural land in Brebes,
Central Java, Indonesia (Fig. 1). Soil orders at the study site
include Inceptisols, Alfisols, and Andisols (according to USDA
soil taxonomy classification) (ICALRD, 2017). Soil sampling
was conducted using a random composite method at a 0-30
cm depth. Soil sampling was carried out at 61 distinct sites,
producing 61 composite samples. The sampled soils
represent potential areas for shallot cultivation in Brebes
Regency. The selected sampling sites also reflect the three
dominant soil types in the region: Inceptisols, Alfisols, and
Andisols. Most of the sampling points were in intensively
managed agricultural lands, especially shallot cultivation,
which is one of the region’s horticultural commodities.
Samples were air-dried, crushed, and sieved (<2 mm and 2
mm) before being subjected to laboratory analysis. The soil
characterization involved measurements of selected chemical
properties and soil texture. Analysis of selected soil
properties shown in Table 1.

Saturation percentage of potassium (K saturation) was
determined by dividing Exc-K by CEC and multiplying by 100%.
Available potassium (Avail-K) was determined by combining
Water-K and Exc-K measurements. The difference between
the HNOs-extracted potassium and Avail-K was defined as
non-exchangeable potassium (NE-K). Beckett's method
determined the potassium activity ratio at equilibrium (ARe")
(Beckett, 1964).

2.2. Modeling approaches

This study applied four machine learning models: Random
Forest (RF), Cubist, Support Vector Machine (SVM), and
Multiple Linear Regression (MLR). R software, with the
controlling package being the ‘caret’ (Kuhn et al., 2020), was
used for the entire process of modeling. A brief overview of
each ML method used in the current research is as follows:
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Figure 1. The geographical location of the study area in Brebes Regency, Central Java

Table 1. Analysis of selected soil properties

No. Soil Properties Methods/ Measurements References
1 pH H,0 (1:5) pH-meter Thomas (1996)
2 Organic-C (org-C) Walkley and Black Nelson and Sommers (1996)
3 Potential K HCl 25% Eviati et al. (2023)
4 Cation Exchange Cation (CEC) NH;OAc1NatpH 7 Sumner and Miller (1996)
5 Exchangeable K (Exc-K) and Na (Exc-Na) Flamephotometer Helmke and Sparks (1996)
6 Exchangeable Ca (Exc-Ca) and Mg (Exc- Atomic Absorption Suarez (1996)
Mg) Spectrophotometry (AAS)
7 Water-soluble K (Water-K) Soil-water at a 1:5 ratio Soil and Plant Analysis Council
Inc. (2000)
8 K-HNO; Boiling with HNO3 Helmke and Sparks (1996)
9 Soil texture (sand, silt, and clay fractions)  Pipette van Reeuwijk (2002)

1) Random Forest (RF)

RF is a supervised and integrated learning model that
aggregates results from single decision trees. RF is an
ensemble method that improves prediction efficiency by
averaging multiple decision trees and is widely used for
classification and regression purposes (Breiman, 2001). Two
hyperparameters can be modified in the RF model to adjust
the model's complexity, namely the number of trees (or
iterations) (ntree) and mtry. In this study, the mtry value was
tested repeatedly from one to the total number of variables,
while the ntree was set at 500. The model performance of
each hyperparameter tuning combination was achieved using
the combination of grid search and the K-fold cross-validation
method (K-fold CV) (Zhou et al., 2019).

2) Cubist

Quinlan (1992) introduced the Cubist model as an
approach to regression modeling. This model is applied in R
by performing hyperparameter tuning on instance
(neighbors) and committee (committee) parameters. The
instance and committee parameters tend to have the greatest
influence on the overall performance of the Cubist model.
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3) Support Vector Machine (SVM)

SVM is an effective and widely used learning model for
classifying linear and nonlinear regression problems (Cortes &
Vapnik, 1995; Onyelowe et al., 2022). Regression SVM with a
radial basis function (RBF) kernel method is applied in this
study. The radial-based kernel approach is utilized to
generate optimal performance from the SVM model by
discovering the best combination of parameters (Sigma and
Cost/ C) for the ARe" training data set.

4) Multiple Linear Regression (MLR)

MLR is one of the algorithms used in machine learning that
regresses the response variable against the predictor
variables. Equation 1 presents a simple MLR equation.

y=a+XL, bixxi t €

with n indicating the total number of predictor variables; y
indicates the dependent variable (ARe¥); xi indicates the
predictor variables (indicator variables of several soil and
environmental properties); a indicates the intercept (constant);
bi indicates the regression coefficient for each independent
variable; & indicates the error (residual) in the model.
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Figure 2. Methodological flowchart

K-fold cross-validation is one of the most widely used
cross-validation methods in machine learning, and a value of
K = 5 with five repetitions was applied in this study. The
methodology for estimating the parameter involved in the
dynamics of K (AReX) using machine learning methods is
illustrated in Figure 2. Variable selection was then performed
to determine the number of predictor variables used for
modeling. Variable selection was performed using Pearson
correlation to eliminate highly correlated predictors and
reduce multicollinearity. The data were split into 75% for
training and 25% for testing the model.

2.3. Model performance

Model performance is an integral part of the model design
process, helping to identify the model that can provide the
best predictive results. The measures used to evaluate the
prediction accuracy and the level of model fit included the
mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R2?). R? was used to assess
the extent to which the model was able to capture variations
in the observed data. The MAE explains the general absolute
error between predictions and actual values, giving equal
weight to each error. It is less sensitive to large errors
compared to R? and RMSE. Meanwhile, RMSE calculates
errors by squaring each one, thus giving larger errors were
Table 2. Descriptive statistics of ARe®

calculated with a higher weight proportion. The level of
estimation error in the observed variable units was measured
using the RMSE and MAE values. A value of zero for both
metrics indicates a very good model fit and reflects strong
predictive performance, as it corresponds to minimal
estimation error. An accurate model prediction shows low
RMSE and MAE, and an R? value close to 1. Model evaluation
was carried out using test data. The numbers obtained from
the evaluation of the test data provided an accurate
assessment of how well the model performed on new data
that was not involved in model training. All MAE, RMSE, and
R2 were utilized to evaluate the performance of the model as
outlined by Equations 2, 3, and 4.

. R
MAE =~ %" |ARe¥(y,) — AReX (9|

RMSE = \/%zg;l [AReX (y,) — AREK (D)2 vevvveerrnens 3]

31, [4ReK (y-AReX 9p)]°
™ ,[AReK (yp-areK (7))

where AReX(y;) indicates the measured response,
AReX (9;) represent the prediction response of AReX,
AReX (3;) represent the average value of AReX observation,
the number of samples is denoted by n, and i indicates the
order of observation (i=1,2,3, ..., n).

R?=1
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n Mean Median SD

Min

Max 15t Quartile 3 Quartile cv

ARe¥

(mol/L)12 61 0.004

0.003 0.004

0.0003

0.018 0.0014 0.005 96.71

Remarks: n = number of samples; SD = standar deviation; Min = minimum; Max = maximum; CV = Coefficient of Variation

3. RESULTS
3.1. Descriptive statistics

Descriptive statistics from AReX at the research locations
are presented in Table 2. According to the coefficient of
variation (CV) value, ARe* exhibited high variability (CV >
35%). The mean and median values of AReX indicated that, in
most locations, the activity of K in soil solutions was relatively
medium or K is adsorbed at the edge sites of 2:1 clay mineral.
However, the high CV score suggested a large variation
between locations. This variation can be referred to as factors
that influence AReX, such as soil mineralogy, soil properties,
and environmental factors.

3.2. Variable selection

Table 3 presents the analysis of the correlation using
Pearson correlation. Based on Table 3, out of 15 predictor
variables, four variables exhibited high correlation (r > 0.73)
with each other, namely Avail-K, Water-K, Potential K, and K
Saturation. These four predictor variables were excluded
from model development to minimize data redundancy and
boost the model’s consistency and reliability of the
constructed ML models. In machine learning models, high
correlation between variables can lead to information
redundancy, which may affect model interpretation, although
some machine learning algorithms are relatively robust to the
situation.

3.3. Hyperparameters optimization results

RF, Cubist, and SVM models were applied to estimate
AReX. The original dataset, consisting of various soil and
environmental properties affecting AReX, was randomly split
into a training and testing dataset. In this study, as much as
75% of the data was used as a randomly selected training set,
and 25% as a testing set. The performance of the regression
model was evaluated using the testing dataset. The amount
of training data determines the performance of the AReX.
The AReX dataset, consisting of 61 observations, was
randomly split into 47 for training and 14 for testing. The
regression model was built using data from the training
dataset to assess the parameters of the RF, Cubist, and SVM
regression methods. To tune optimal hyperparameters and
reduce potential bias, a five-fold cross-validation method was
applied to the RF, Cubist, and SVM models.

The RF model using the "rf" method by default produced
parameters (mtry) of 2, 6,and 11 (Table 4). The optimal model
was obtained at mtry=6 based on the smallest RMSE. In
addition to using the "rf" method, the RF model was also
tested using the "ranger" method. The results of the "ranger"
method showed that setting mtry=11 with splitrule =
extratrees and min.node.size=5 provided the best results in
terms of R2, RMSE and MAE (Table 5). To analyze the behavior
of hyperparameters in RF, namely ntree and mtry, was
carried out by tuning the model using a grid search approach
combined with a cross-validation method. The mtry

parameters tested for the RF model using the "rf" method
werel,2,3,4,5,6,7,8,9,10, 11 (Table 6). The optimal model
was obtained at mtry = 2 based on the smallest RMSE. For the
"ranger" method, the tuning parameters tested included mtry
=1,2,3,4,5,6,7,8,9, 10, 11; ntree = 200, 300, 400, 500 and
node.size = seq(3, 20, by = 2). The best values were obtained
with mtry = 2, ntree = 500, and node.size = 7 (Table 7).

Table 8 presents the results of an SVM model. Based on
the smallest RMSE, the optimal model was obtained at C=1,
with Sigma=0.1734. Table 9 shows the results of parameter
tuning in the SVM model, with sigma values tested at 0.05,
0.06, 0.07, 0.08, 0.09, 0.1, and C values tested at 0.2, 0.3, 0.4,
and 0.5. RMSE was employed to choose the optimal model
based on the lowest value. The values sigma = 0.05 and C =
0.5 were set as the final model parameters. The performance
of the Cubist in the default configuration is shown in Table 10,
and the performance after tuning is presented in Table 11. In
Table 11, the tuned model presented a reduction in the
number of committees and neighbors, indicating a simpler
model structure that resulted in lower MAE and RMSE values.

3.4. Evaluating measured and predicted ARe* using
different machine learning models

Evaluation of the performance of the predictive model
was carried out using common validation metrics, namely
RMSE, MAE, and R% The validation datasets’ results are
provided in Table 12. Using the validation dataset, suggested
ML models demonstrated their capacity to estimate AReX in
14 test datasets. The Cubist model exhibited the smallest
RMSE and MAE values among the three machine learning
models studied. The tuned RF model showed lower predictive
ability in comparison with the default model, as seen from the
increasing RMSE and MAE values, as well as a lower R? value.
Meanwhile, the SVM model showed the highest MAE value
compared to other machine learning models. The Cubist
model was superior to the others, achieving the lowest MAE
and the highest R? value. MLR model predictive ability was
comparable, which belongs to the Cubist model.

3.5. Importance factors in the individual models

Figure 3a presents the RF model prediction using the "rf"
method. The figure indicates that Exc-K is the best predictor,
followed by Exc-Mg and NE-K, in explaining soil ~ AReX
variability. Similarly, in the RF model using the "ranger"
method with the default training dataset (Fig. 3b), Exc-K
remained the most reliable predictor, then Exc-Mg. For
the Cubist model prediction, trained using the tuned training
dataset (Fig. 3c), Exc-K and Exc-Mg were identified as
the most significant predictors, followed by CEC and Exc-Ca
for explaining soil ARe®  variability. The best
predictors identified by the MLR model in predicting AReX
variability were Exc-K, followed by NE-K and slope (Fig. 3d).
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Table 3. Correlation analysis results

Correlation

(n=61 Exc-Ca  Exc-Mg CEC Clay Org-C pH Exc-Na Water-K  Exc-K NE-K  Avail-K K Saturation Potential K Elevation Slope
samples)

Exc-Ca 1.00

Exc-Mg -0.06 1.00

CEC 0.50**  0.41%** 1.00

Clay 0.54**  0.51**  0.50** 1.00

Org-C -0.29*  -0.48** -0.55**  -0.51** 1.00

pH 0.67** 0.10 0.12 0.33**  -0.26* 1.00

Exc-Na 0.07 0.39**  0.41%** 0.31* -0.23 0.13 1.00

Water-K 0.19 0.07 0.13 0.10 -0.08 0.01 0.39** 1.00

Exc-K 0.31* -0.02 0.12 0.13 0.01 0.15 0.42**  0.85** 1.00

NE-K 0.24 0.32* 0.34** 0.39**  -0.50**  0.26* 0.47** 0.38** 0.20 1.00

Avail-K 0.31* -0.02 0.12 0.13 0.01 0.14  0.42** 0.86** 1.00 0.21 1.00

K Saturation 0.09 -0.21 -0.27* -0.11 0.23 0.07 0.21 0.67** 0.87** -0.03 0.87** 1.00

Potential K 0.36** 0.14 0.21 0.30* -0.16 0.28*  0.52** 0.66** 0.82** 0.37** 0.82** 0.65** 1.00

Elevation -0.54**  -0.49** -0.59**  -0.63** 0.59** -0.33** -0.24 -0.15 -0.11  -0.54** -0.11 0.19 -0.32* 1.00

Slope -0.44**  -0.42** -0.44**  -0.56** 0.37** -0.30* -0.29*% -0.19 -0.19 -0.55** -0.19 -0.02 -0.36** 0.73** 1.00
AReX 0.03 -0.07 -0.10 -0.08 0.02 0.004 0.26 0.84**  0.79** 0.21 0.80** 0.70** 0.59** 0.15 0.11

Remarks: *) p-value <0.05; **) p-value < 0.01
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Table 4. Results of the Random Forest model of the "rf"

method of default

Table 7. Results of the Random Forest model of the "ranger"
method of tuned

Parameter RMSE R2 MAE
(mtry)

2 0.724 0.287 0.520

6 0.718 0.294 0.512

11 0.723 0.267 0.513

Table 5. Results of the Random Forest model of the "ranger"

method of default

Parameter

mtry Node.size ntree OOB_RMSE
2 7 500 0.7339
2 7 400 0.7355
5 13 400 0.7356
5 11 400 0.7358
5 9 400 0.7363
5 15 400 0.7364
8 5 500 0.7365
8 9 500 0.7366
8 7 500 0.7367
8 7 500 0.7369

Table 8. Results of the SVM model of default

C RMSE R? MAE
0.25 0.7135 0.2697 0.5179
0.50 0.7002 0.2646 0.5132
1.00 0.6916 0.2757 0.5078

(mtry) Splitrule RMSE R? MAE
2 variance 0.725 0.303 0.520
2 extratrees 0.688 0.358 0.501
6 variance 0.723 0.288 0.516
6 extratrees 0.666 0.379 0.480
11 variance 0.719 0.276 0.510
11 extratrees 0.647 0.397 0.468
Table 6. Results of the Random Forest model of the "rf"
method of tuned
Parameter RMSE R2 MAE
(mtry)
1 0.7162 0.3061 0.5207
2 0.7144 0.3073 0.5129
3 0.7205 0.2881 0.5155
4 0.7175 0.2983 0.5105
5 0.7187 0.3132 0.5107
6 0.7188 0.2905 0.5106
7 0.7197 0.2793 0.5131
8 0.7187 0.2866 0.5115
9 0.7181 0.2874 0.5096
10 0.7153 0.2826 0.5091
11 0.7236 0.2715 0.5107

4, DISCUSSION

The RF, Cubist, and SVM model approaches were used to
predict the activity ratio K in equilibrium (AReX), and the MLR
model served as the baseline. The Cubist model showed the
smallest average RMSE and MAE, and the greatest model fit
(R?) compared to SVM and RF. The greatest average MAE
value was obtained from the SVM model, while the RF model
showed the highest average RMSE among all tested models.
Considering these evaluation results, the Cubist model
emerged as the best-performing model in predicting AReX. In
this study, the Cubist and RF models showed different
performances in predicting response variables.

This result differs from the findings of Zhou et al. (2019),
who predicted the shear strength of rockfill materials, stating
that the Cubist and RF models had the same prediction
performance. While some studies have shown RF to
outperform Cubist under specific conditions (Drzewiecki,
2016), others have demonstrated superior accuracy of the
Cubist model in predicting environmental and soil variables
such as total nitrogen, organic carbon, and CEC (Ludwig et al.,
2022; Wu et al., 2022).
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The superior performance of the Cubist model in this
study is likely attributed to its combined modeling approach,
which integrates rule-based decision trees with linear
regression models applied at the terminal segments of the
tree structure. This design allows the Cubist model to
effectively capture both linear and piecewise-linear
relationships, which is particularly advantageous for soil
datasets that often exhibit local linear patterns within
broader variability. Additionally, the relatively small sample
size (n=61) used in this study may have favored Cubist, as it
tends to generalize better than more complex models such as
RF or SVM in data-limited conditions. This performance is
consistent with findings from other studies reporting the
advantage of Cubist modeling in soil properties estimation
using relatively small and linear datasets (John et al., 2020;
Ludwig et al., 2022).

The MLR model performed comparably to Cubist model in
this study, suggesting that a simpler and more interpretable
model is sufficient to capture most of the variability in ARe®
under predominantly linear conditions. Thus, in context with
limited data and clear linear structure, MLR may serve as an
efficient and robust alternative. However, ML approaches
such as Cubist remain valuable in broader applications
involving nonlinear dynamics or complex interactions
between predictors and response variables, especially in
areas with spatial and soil-related variability. Furthermore,
the Cubist model produces outputs that are more
interpretable compared to models with less algorithmic
transparency, such as SVM, thus offering practical advantages
for decision-making in agricultural land management. These
results confirm that the Cubist model not only outperforms
RF, SVM, and MLR in this specific context, but also stands out
as the most suitable modeling approach for predicting ARe*
in relatively small and heterogeneous soil datasets.
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Table 9. Results of the SVM model of tuned

Sigma C RMSE R? MAE

0.05 0.2 0.7066 0.3714 0.5166
0.05 0.3 0.6864 0.3763 0.5000
0.05 0.4 0.6720 0.3822 0.4901
0.05 0.5 0.6619 0.3855 0.4843
0.06 0.2 0.7077 0.3530 0.5156
0.06 0.3 0.6895 0.3553 0.5015
0.06 0.4 0.6785 0.3588 0.4943
0.06 0.5 0.6714 0.3585 0.4907
0.07 0.2 0.7092 0.3372 0.5160
0.07 0.3 0.6921 0.3381 0.5028
0.07 0.4 0.6850 0.3380 0.4992
0.07 0.5 0.6791 0.3377 0.4965
0.08 0.2 0.7108 0.3234 0.5168
0.08 0.3 0.6950 0.3235 0.5046
0.08 0.4 0.6899 0.3219 0.5027
0.08 0.5 0.6849 0.3212 0.5012
0.09 0.2 0.7122 0.3119 0.5177
0.09 0.3 0.6976 0.3114 0.5063
0.09 0.4 0.6937 0.3089 0.5056
0.09 0.5 0.6893 0.3085 0.5049
0.10 0.2 0.7137 0.3023 0.5186
0.10 0.3 0.6997 0.3017 0.5081
0.10 0.4 0.6964 0.2986 0.5077
0.10 0.5 0.6925 0.2985 0.5076

Table 10. Cubist model results (default)

Model Cases Attributes Committees Neighbors MAE RMSE R?

Cubist 48 12 10 5 0.4738 0.6823 0.8863

Table 11. Results of the Cubist model (tuned)

Model Cases Attributes Committees Neighbors MAE RMSE R?

Cubist 48 12 5 4 0.3514 0.5701 0.9437

Table 12. The validation datasets results

Model R? RMSE MAE

RF (rf method)

Default Model 0.6193 1.2044 0.7438

Tuned Model 0.3009 1.3511 0.8386
RF (ranger method)

Default Model 0.8214 0.9944 0.6513

Tuned Model 0.3534 1.3396 0.8325
SVM

Default Model 0.3538 1.3583 0.8490

Tuned Model 0.3734 1.2842 0.8395
Cubist

Default Model 0.8863 0.6823 0.4738

Tuned Model 0.9437 0.5701 0.3514
MLR 0.9076 0.5255 0.3784
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Figure 3. Relative importance variable for AReX using RF model “rf” method (a), RF model “ranger” method (b), Cubist (c), and
MLR model (d)

Based on the results of four machine learning models, soil
properties variables such as Exc-K, Exc-Mg, CEC, Exc-Ca, and
NE-K contribute to predicting AReX. These results indicate
that soil properties variables provide a greater contribution
compared to environmental variables, in this case, elevation
and slope gradient. One factor that supports this finding is
that most of the research data was obtained from locations
with flat topography, so environmental variability has no or
negligible effects. These results were consistent with previous
research (John et al., 2020), which found that environmental
variables do not affect soil organic carbon levels on flat
topography in Calabar, Cross River State.

Soil properties serve an important function in determining
the forms of soil K (Li et al., 2021), including AReX. One of the
main soil properties that influences is CEC. The soil at the
research location had an average soil CEC in the high
category, has a clay texture, and contains 2:1 type clay
mineral (Nadalia et al., 2024). Clay affects soil CEC, where soil
dominated by clay fractions had a higher CEC and water-
holding capacity. The type of clay mineral also plays an
important role in determining soil CEC. At the study site,
Inceptisols contain smectite or vermiculite minerals, which
contribute to elevated CEC values than soils dominated by
kaolinite or other mineral combinations. Soil containing illite
and vermiculite minerals had a high capacity to bind Kinto the
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non-exchangeable K form (NE-K), so in soil containing these
minerals, AReX could be lower even though the total K was
high. In addition to Exc-K, NE-K could make a reasonably high
contribution to increasing AReX in the soil (Islam et al., 2023;
Panda & Patra, 2018) and K nutrient uptake (Al Viandari et al.,
2024). Hartati et al. (2018) reported a positive correlation
between K uptake with total K and available K.

In addition, magnesium nutrients also affect the dynamics
of adsorption and desorption of other cations, including K,
thus affecting the availability of K for plants (Al-Obaidi &
Syan, 2022; Laekemariam et al., 2018; Xie et al., 2021). This
condition is relevant in soil with a 2:1 clay mineral type
content, where the space between clay mineral layers can
trap K into NE-K. The presence of high amounts of
exchangeable Ca and Mg may displace K from exchange sites,
leading to greater desorption of K into the soil solution and
thereby increasing ARe® (Kassa et al., 2021). However, as
reported by Han et al. (2019) and Schneider et al. (2016), high
Ca concentrations in the soil solution can reduce K uptake by
plants. This is caused due to K displacement from the
exchange site, which potentially causing K leaching and
promoting selective Ca uptake through mass flow. This dual
mechanism illustrates that, while Ca and Mg may enhance
AReX in the soil, excessive concentrations can suppress K
availability to plants through ionic competition.
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The use of RF, SVM, and Cubist approaches to predict AReX
had limitations that should be resolved in continued research.
First, one of the limitations of the RF, SVM, and Cubist models
was the relatively small dataset size; only 61 data were used
in the modeling. To improve the validity and reliability of the
model, analysis on a greater dataset is utterly needed.
Second, other local environmental parameters (e.g., in situ
temperature, rainfall, soil moisture) and clay mineral
composition can affect AReX, as well as further exploration of
other hyperparameters of the RF, SVM, and Cubist models,
which can improve model performance. Finally, other
supervised machine learning techniques with superior results
in modeling nonlinear relationships, such as Gaussian Process
Regression (GPR), and Artificial Neural Networks (ANN), have
not entirely been studied and compared for ARe prediction.
Optimal prediction results are highly dependent on the data
guantity and quality. Although the Cubist model provides the
most accurate prediction results, this study did not evaluate
its transparency or usability for non-technical users like
farmers or extension workers. The model was intended to
simplify complex laboratory procedures for determining AReX
using easily measurable soil and environmental variables. To
ensure broader field applicability, particularly for site-specific
fertilizer recommendations, future research focus on
developing  decision-support tools or user-friendly
applications that translate the model outputs into practical
guidance. This is essential to ensure that the predictive
advantages of the Cubist model can be effectively utilized in
nutrient management strategies tailored for agricultural
stakeholders.

5. CONCLUSION

The research found that the Cubist model (R?= 0.9437;
RMSE= 0.5701; MAE= 0.3514) predicted AReX better than
MLR, SVM, and RF in agricultural land in Brebes Regency,
Central Java. Soil properties (Exc-K, Exc-Mg, CEC, Exc-Ca, and
NE-K) were considered important variables in ARe® prediction
in this study. This ML approach in predicting ARe can support
site-specific K fertilizer recommendations for the agricultural
land of Brebes regency. Future studies should improve the
accuracy of the model by expanding the dataset, adjusting
hyperparameters, or incorporating new predictive variables
(e.g., soil properties, clay minerals, climate factors).
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