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The potassium (K) Quantity-Intensity (Q-I) relationship results in important parameters, 
including the activity ratio of potassium at equilibrium (AReK), which indicates potassium 
availability in soil. Experiments to observe soil Q-I K relationship parameters are often 
complex, time-consuming, and do not include environmental variables. This research aims 
to model AReK using a machine learning (ML) approach. ML models applied are Random 
Forest (RF), Cubist, and Support Vector Machine (SVM) as the primary approaches, with 
Multiple Linear Regression (MLR) serving as a baseline. The dataset was derived from sixty-
one observation points in Brebes, Central Java. The predictors were pH, organic carbon, 
clay, cation exchange capacity (CEC), exchangeable cations (Exc-Ca, Mg, K, Na), water 
soluble K, available K, K saturation, potential K, non-exchangeable K (NE-K), elevation, and 
slope. The response variable was the AReK. Variable selection was performed using Pearson 
correlation to eliminate highly correlated predictors and reduce multicollinearity. Exactly 
75% of the data was utilized as the training set and 25% as the test set. Three metrics, i.e., 
MAE, RMSE, and R², were used in model evaluation. The results showed that the Cubist 
model could predict AReK with high accuracy (R2=0.9437) and low RMSE (0.5701) and MAE 
(0.3514). Based on the Cubist model, Exc-K, Exc-Mg, CEC, and Exc-Ca were the most 
important variables for predicting AReK. This model can be employed to support site-
specific fertilizer recommendation strategies. To improve the performance of the model, 
it is necessary to add other predictor variables (e.g., soil physical properties, clay minerals, 
rainfall, temperature and soil moisture). 
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1. INTRODUCTION 
The dynamics of Potassium (K) in soils are affected by its 

interactions with calcium (Ca) and magnesium (Mg). 
Understanding of soil K dynamics can be seen from the 
thermodynamic Quantity-Intensity (Q-I) K relationship 
(Beckett, 1964). The Q-I K relationship results in important 
parameters, including the activity ratio of K at equilibrium 
(AReK). AReK is the activity ratio of K in soil solution at 
equilibrium (ΔΚ=0). The activity ratio of K is calculated by 
dividing the activity of K by the square root of the combined 
activities of Ca and Mg. This value reflects the intensity of K 
availability by considering the influence of Ca and Mg, which 
can compete with K in the soil solution. AReK tends to rise with 
higher levels of K concentration in the soil solution (Ajiboye et 
al., 2015; Al-Hamandi et al., 2019; Bilias & Barbayiannis, 2019; 

Lalitha & Dhakshinamoorthy, 2015; Lumbanraja et al., 2020; 
Zhu et al., 2020). Recent research by Nadalia et al. (2024) 
observed variations in AReK in Brebes farmland soils. The 
findings suggest that K is predominantly adsorbed at edge 
positions of 2:1 clay mineral, which contributes to efficient K 
release during depletion. However, farmers in the Brebes 
regency study area typically apply synthetic inorganic K 
fertilizer at 150 kg/ha K₂O, exceeding the recommended 
amount for shallot plants (Balittanah, 2021). The excessive 
use of fertilizer has an impact on the accumulation of K 
residues in the soil. This is supported by the results of Muliana 
et al. (2018), who found that K extracted using 25% HCl in 
several shallot cultivation areas averaged of 55 mg/100 g K2O, 
a level classified as high. Thus, assessing K nutrient availability 
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in these intensively managed shallot cultivation soils is crucial 
for optimizing fertilizer application and enhancing nutrient 
management efficiency. 

Experiments to observe soil Q-I K relationship parameters 
are often complex, costly, and time-consuming. Additionally, 
Q-I K relationship parameters have not yet incorporated 
environmental variables. Controlling environment, such as 
climate and topography data, brings a better understanding 
on the relationship between environmental conditions as well 
as soil nutrients, revealing gradual changes through both 
linear and nonlinear associations. As a result, there is an 
urgent demand for faster and more accurate methods to 
predict soil nutrients, minimize nutrient losses, and improve 
the efficiency of fertilizer management (Song et al., 2018). 

Survey of the literature, however, indicates that Q-I 
studies are yet to be intertwined with machine learning (ML) 
as a modern data extraction. Currently, linear regression 
models, particularly Multiple Linear Regression (MLR), are 
frequently utilized to examine, interpret, and forecast various 
soil science data (Rossiter, 2018; Sharma et al., 2015). The use 
of ML in soil science investigations has also been progressing 
(Li et al., 2022; Padarian et al., 2020; Rossiter, 2018; Wang et 
al., 2023). Geostatistical methods for spatial interpolation are 
widely used in nutrient assessment research. Despite 
extensive testing, these approaches often struggle to capture 
the relationship between nutrients and their environmental 
context. This limitation has encouraged the development of 
ML-based methods. However, they have mainly focused on 
nutrients other than K. Machine learning models can 
effectively process and identify patterns and handle 
multicollinearity, heteroscedasticity, and nonlinear 
relationship problems (Chen et al., 2019; Feng et al., 2019; 
Padarian et al., 2020). Typically, ML models have at least one 
parameter requiring adjustment, which should be calibrated 
from predictive estimates of errors. Random Forest (RF) 
model works effectively with minimal tuning. Probst et al. 

(2019), for instance, proved that RF tuning and improved 
regression tree models can optimize predictive results. 
Adjustments, however, should be cautiously applied as the 
models are prone to overfitting (Ließ et al., 2016). Bilias and 
Barbayiannis (2020) research presented a model for 
evaluating soil nutrients using support vector machines (SVM) 
and MLR. In the study, independent variables were the 
content of the organic matter, total nitrogen, available 
potassium, and available phosphorus. The study's results 
indicated that the SVM algorithm produced an average 
accuracy of 77.87%, while the MLR algorithm reached 
83.00%. These results provide information that SVM can 
effectively predict nutrient content in the soil. In addition, the 
Cubist model for soil organic carbon estimation showed the 
best performance compared to a simpler model, namely 
multivariate linear regression, and was easier to interpret 
than the artificial neural network (ANN) model (John et al., 
2020; John et al., 2021). Covariates or environmental 
variables serve as predictors in machine learning models. 
These covariates can explain the underlying physical and 
chemical processes that drive spatial variability in soil 
characteristics. The most common covariates are soil 
properties, average annual rainfall (long term), temperature, 
remote sensing imagery (e.g., vegetation index obtained from 

satellite imagery), elevation, and terrain-related metrics (e.g., 
slope, local curvature, topographic wetness index) (Gomes et 
al., 2019; Szatmári et al., 2019).  

This study is the first to apply ML algorithms (RF, Cubist, 
and SVM) to model AReK based on soil properties and 
environmental variables. Although past studies have explored 
both linear regression and ML applications for general 
nutrient prediction, none has specifically modeled the activity 
ratio of K (AReK) using ML algorithms. The models also 
generate variable importance that help identity key factors 
influencing AReK. Soil properties and environmental factors 
that potentially influence AReK include exchangeable K, Ca, 
Mg, Na, cation exchange capacity (CEC), clay content, organic 
carbon, soil pH, non-exchangeable K, elevation, and slope. 
The resulting variables importance can subsequently be used 
to predict AReK through ML models. Therefore, this research 
aims to model AReK using a ML approach and assess the 
performance of ML-based approaches in predicting AReK 
within cultivated lands of Brebes, Central Java. The ML 
approach can help assess soil nutrients, including AReK, which 
can be employed to support site-specific fertilizer 
recommendation strategies to optimize K management. 

 

2. MATERIAL AND METHODS 
2.1. Soil characteristic analysis 

This study was conducted on agricultural land in Brebes, 
Central Java, Indonesia (Fig. 1). Soil orders at the study site 
include Inceptisols, Alfisols, and Andisols (according to USDA 
soil taxonomy classification) (ICALRD, 2017). Soil sampling 
was conducted using a random composite method at a 0–30 
cm depth. Soil sampling was carried out at 61 distinct sites, 
producing 61 composite samples. The sampled soils 
represent potential areas for shallot cultivation in Brebes 
Regency. The selected sampling sites also reflect the three 
dominant soil types in the region: Inceptisols, Alfisols, and 
Andisols. Most of the sampling points were in intensively 
managed agricultural lands, especially shallot cultivation, 
which is one of the region’s horticultural commodities. 
Samples were air-dried, crushed, and sieved (<2 mm and 2 
mm) before being subjected to laboratory analysis. The soil 
characterization involved measurements of selected chemical 
properties and soil texture. Analysis of selected soil 
properties shown in Table 1. 

Saturation percentage of potassium (K saturation) was 
determined by dividing Exc-K by CEC and multiplying by 100%. 
Available potassium (Avail-K) was determined by combining 
Water-K and Exc-K measurements. The difference between 
the HNO₃-extracted potassium and Avail-K was defined as 
non-exchangeable potassium (NE-K). Beckett's method 
determined the potassium activity ratio at equilibrium (AReK) 
(Beckett, 1964). 

 

2.2. Modeling approaches 
This study applied four machine learning models: Random 

Forest (RF), Cubist, Support Vector Machine (SVM), and 
Multiple Linear Regression (MLR). R software, with the 
controlling package being the ‘caret’ (Kuhn et al., 2020), was 
used for the entire process of modeling. A brief overview of 
each ML method used in the current research is as follows: 
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Figure 1. The geographical location of the study area in Brebes Regency, Central Java 

 
Table 1. Analysis of selected soil properties 

No. Soil Properties Methods/ Measurements References 

1 pH H2O (1:5) pH-meter Thomas (1996) 
2 Organic-C (org-C) Walkley and Black Nelson and Sommers (1996) 
3 Potential K  HCl 25% Eviati et al. (2023) 
4 Cation Exchange Cation (CEC)  NH4OAc 1 N at pH 7 Sumner and Miller (1996) 
5 Exchangeable K (Exc-K) and Na (Exc-Na)  Flamephotometer Helmke and Sparks (1996) 
6 Exchangeable Ca (Exc-Ca) and Mg (Exc-

Mg)  
Atomic Absorption 
Spectrophotometry (AAS) 

Suarez (1996) 

7 Water-soluble K (Water-K)  Soil-water at a 1:5 ratio Soil and Plant Analysis Council 
Inc. (2000) 

8 K-HNO3 Boiling with HNO3 Helmke and Sparks (1996) 
9 Soil texture (sand, silt, and clay fractions) Pipette van Reeuwijk (2002) 

 
1) Random Forest (RF) 

RF is a supervised and integrated learning model that 
aggregates results from single decision trees. RF is an 
ensemble method that improves prediction efficiency by 
averaging multiple decision trees and is widely used for 
classification and regression purposes (Breiman, 2001). Two 
hyperparameters can be modified in the RF model to adjust 
the model's complexity, namely the number of trees (or 
iterations) (ntree) and mtry. In this study, the mtry value was 
tested repeatedly from one to the total number of variables, 
while the ntree was set at 500. The model performance of 
each hyperparameter tuning combination was achieved using 
the combination of grid search and the K-fold cross-validation 
method (K-fold CV) (Zhou et al., 2019). 

 
2) Cubist 

Quinlan (1992) introduced the Cubist model as an 
approach to regression modeling. This model is applied in R 
by performing hyperparameter tuning on instance 
(neighbors) and committee (committee) parameters. The 
instance and committee parameters tend to have the greatest 
influence on the overall performance of the Cubist model.   

3) Support Vector Machine (SVM) 
SVM is an effective and widely used learning model for 

classifying linear and nonlinear regression problems (Cortes & 
Vapnik, 1995; Onyelowe et al., 2022). Regression SVM with a 
radial basis function (RBF) kernel method is applied in this 
study. The radial-based kernel approach is utilized to 
generate optimal performance from the SVM model by 
discovering the best combination of parameters (Sigma and 
Cost/ C) for the AReK training data set. 

 
4) Multiple Linear Regression (MLR) 

MLR is one of the algorithms used in machine learning that 
regresses the response variable against the predictor 
variables. Equation 1 presents a simple MLR equation. 

𝑦 = 𝑎 + ∑ 𝑏𝑖 × 𝑥𝑖 ±  𝜀𝑖 𝑛
𝑖=1  ......................................... [1] 

with n indicating the total number of predictor variables; y 
indicates the dependent variable (AReK); xi indicates the 
predictor variables (indicator variables of several soil and 
environmental properties); a indicates the intercept (constant); 
bi indicates the regression coefficient for each independent 

variable; i indicates the error (residual) in the model. 
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Figure 2. Methodological flowchart 

 

K-fold cross-validation is one of the most widely used 
cross-validation methods in machine learning, and a value of 
K = 5 with five repetitions was applied in this study. The 
methodology for estimating the parameter involved in the 
dynamics of K (AReK) using machine learning methods is 
illustrated in Figure 2. Variable selection was then performed 
to determine the number of predictor variables used for 
modeling. Variable selection was performed using Pearson 
correlation to eliminate highly correlated predictors and 
reduce multicollinearity. The data were split into 75% for 
training and 25% for testing the model. 

 

2.3. Model performance 
Model performance is an integral part of the model design 

process, helping to identify the model that can provide the 
best predictive results. The measures used to evaluate the 
prediction accuracy and the level of model fit included the 
mean absolute error (MAE), root mean square error (RMSE), 
and coefficient of determination (R²). R² was used to assess 
the extent to which the model was able to capture variations 
in the observed data. The MAE explains the general absolute 
error between predictions and actual values, giving equal 
weight to each error. It is less sensitive to large errors 
compared to R² and RMSE. Meanwhile, RMSE calculates 
errors by squaring each one, thus giving larger errors were 

calculated with a higher weight proportion. The level of 
estimation error in the observed variable units was measured 
using the RMSE and MAE values. A value of zero for both 
metrics indicates a very good model fit and reflects strong 
predictive performance, as it corresponds to minimal 
estimation error. An accurate model prediction shows low 
RMSE and MAE, and an R² value close to 1. Model evaluation 
was carried out using test data. The numbers obtained from 
the evaluation of the test data provided an accurate 
assessment of how well the model performed on new data 
that was not involved in model training. All MAE, RMSE, and 
R2 were utilized to evaluate the performance of the model as 
outlined by Equations 2, 3, and 4. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑅𝑒𝐾(𝑦𝑖) −  𝐴𝑅𝑒𝐾  (𝑦̂𝑖)|

𝑛

𝑖=1
  ................... [2] 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1 [𝐴𝑅𝑒𝐾(𝑦𝑖) − 𝐴𝑅𝑒𝐾  (𝑦̂𝑖)]2 .............. [3] 

𝑅2 = 1 −
∑ [𝐴𝑅𝑒𝐾(𝑦𝑖)−𝐴𝑅𝑒𝐾  (𝑦̂𝑖)]

2𝑛
𝑖=1

∑ [𝐴𝑅𝑒𝐾(𝑦𝑖)−𝐴𝑅𝑒𝐾  (𝑦̅𝑖)]
2𝑛

𝑖=1

  ................................ [4] 

where 𝐴𝑅𝑒𝐾(𝑦𝑖)  indicates the measured response, 
𝐴𝑅𝑒𝐾 (𝑦̂𝑖)  represent the prediction response of AReK, 
𝐴𝑅𝑒𝐾 (𝑦̅𝑖) represent the average value of AReK observation, 
the number of samples is denoted by n, and i indicates the 
order of observation (i = 1,2,3, . . . , n). 

Data acquisition 

61 soil sample 

Database preprocessing 

Training data Testing data 

Train with ML algorithm (RF, 
SVM, Cubist and MLR 

Models) 
Model 

performance 

Predictor variables       Response variable 

pH H2O      NE-K               
Org-C         Avail-K 
Exc-Ca        Water-K 
Exc-K         Potential K              AReK 
Exc-Mg      K Saturation             
Exc-Na       Elevation 
CEC            Slope 
Clay 
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Table 2. Descriptive statistics of AReK 

 n Mean Median SD Min Max 1st Quartile 3rd Quartile CV 

AReK 
(mol/L)1/2 

61 0.004 0.003 0.004 0.0003 0.018 0.0014 0.005 96.71 

Remarks: n = number of samples; SD = standar deviation; Min = minimum; Max = maximum; CV = Coefficient of Variation 
 

3. RESULTS  
3.1. Descriptive statistics 

Descriptive statistics from AReK at the research locations 
are presented in Table 2. According to the coefficient of 
variation (CV) value, AReK exhibited high variability (CV > 
35%). The mean and median values of AReK indicated that, in 
most locations, the activity of K in soil solutions was relatively 
medium or K is adsorbed at the edge sites of 2:1 clay mineral. 
However, the high CV score suggested a large variation 
between locations. This variation can be referred to as factors 
that influence AReK, such as soil mineralogy, soil properties, 
and environmental factors. 

 

3.2. Variable selection 
Table 3 presents the analysis of the correlation using 

Pearson correlation. Based on Table 3, out of 15 predictor 
variables, four variables exhibited high correlation (r > 0.73) 
with each other, namely Avail-K, Water-K, Potential K, and K 
Saturation. These four predictor variables were excluded 
from model development to minimize data redundancy and 
boost the model’s consistency and reliability of the 
constructed ML models. In machine learning models, high 
correlation between variables can lead to information 
redundancy, which may affect model interpretation, although 
some machine learning algorithms are relatively robust to the 
situation. 

 

3.3. Hyperparameters optimization results 
RF, Cubist, and SVM models were applied to estimate 

AReK. The original dataset, consisting of various soil and 
environmental properties affecting AReK, was randomly split 
into a training and testing dataset. In this study, as much as 
75% of the data was used as a randomly selected training set, 
and 25% as a testing set. The performance of the regression 
model was evaluated using the testing dataset. The amount 
of training data determines the performance of the AReK. 
The AReK dataset, consisting of 61 observations, was 
randomly split into 47 for training and 14 for testing. The 
regression model was built using data from the training 
dataset to assess the parameters of the RF, Cubist, and SVM 
regression methods. To tune optimal hyperparameters and 
reduce potential bias, a five-fold cross-validation method was 
applied to the RF, Cubist, and SVM models.  

The RF model using the "rf" method by default produced 
parameters (mtry) of 2, 6, and 11 (Table 4). The optimal model 
was obtained at mtry=6 based on the smallest RMSE. In 
addition to using the "rf" method, the RF model was also 
tested using the "ranger" method. The results of the "ranger" 
method showed that setting mtry=11 with splitrule = 
extratrees and min.node.size=5 provided the best results in 
terms of R2, RMSE and MAE (Table 5). To analyze the behavior 
of hyperparameters in RF, namely ntree and mtry, was 
carried out by tuning the model using a grid search approach 

combined with a cross-validation method. The mtry 
parameters tested for the RF model using the "rf" method 
were 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 (Table 6). The optimal model 
was obtained at mtry = 2 based on the smallest RMSE. For the 
"ranger" method, the tuning parameters tested included mtry 
= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; ntree = 200, 300, 400, 500 and 
node.size = seq(3, 20, by = 2). The best values were obtained 
with mtry = 2, ntree = 500, and node.size = 7 (Table 7). 

Table 8 presents the results of an SVM model. Based on 
the smallest RMSE, the optimal model was obtained at C=1, 
with Sigma=0.1734. Table 9 shows the results of parameter 
tuning in the SVM model, with sigma values tested at 0.05, 
0.06, 0.07, 0.08, 0.09, 0.1, and C values tested at 0.2, 0.3, 0.4, 
and 0.5. RMSE was employed to choose the optimal model 
based on the lowest value. The values sigma = 0.05 and C = 
0.5 were set as the final model parameters. The performance 
of the Cubist in the default configuration is shown in Table 10, 
and the performance after tuning is presented in Table 11. In 
Table 11, the tuned model presented a reduction in the 
number of committees and neighbors, indicating a simpler 
model structure that resulted in lower MAE and RMSE values. 

 

3.4.  Evaluating measured and predicted AReK using 
different machine learning models  

Evaluation of the performance of the predictive model 
was carried out using common validation metrics, namely 
RMSE, MAE, and R2. The validation datasets’ results are 
provided in Table 12. Using the validation dataset, suggested 
ML models demonstrated their capacity to estimate AReK in 
14 test datasets. The Cubist model exhibited the smallest 
RMSE and MAE values among the three machine learning 
models studied. The tuned RF model showed lower predictive 
ability in comparison with the default model, as seen from the 
increasing RMSE and MAE values, as well as a lower R2 value. 
Meanwhile, the SVM model showed the highest MAE value 
compared to other machine learning models. The Cubist 
model was superior to the others, achieving the lowest MAE 
and the highest R² value. MLR model predictive ability was 
comparable, which belongs to the Cubist model. 

 

3.5. Importance factors in the individual models  
Figure 3a presents the RF model prediction using the "rf" 

method. The figure indicates that Exc-K is the best predictor, 
followed by Exc-Mg and NE-K, in explaining soil AReK 

variability. Similarly, in the RF model using the "ranger" 
method with the default training dataset (Fig. 3b), Exc-K 
remained the most reliable predictor, then Exc-Mg. For 
the Cubist model prediction, trained using the tuned training 
dataset (Fig. 3c), Exc-K and Exc-Mg were identified as 
the most significant predictors, followed by CEC and Exc-Ca 
for explaining soil AReK variability. The best 
predictors identified by the MLR model in predicting AReK 
variability were Exc-K, followed by NE-K and slope (Fig. 3d). 
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Table 3. Correlation analysis results  

Correlation 
(n=61 

samples) 
Exc-Ca Exc-Mg CEC Clay Org-C pH Exc-Na Water-K Exc-K NE-K Avail-K K Saturation Potential K Elevation Slope 

Exc-Ca 1.00               

Exc-Mg -0.06 1.00              

CEC 0.50** 0.41** 1.00             

Clay 0.54** 0.51** 0.50** 1.00            

Org-C -0.29* -0.48** -0.55** -0.51** 1.00           

pH 0.67** 0.10 0.12 0.33** -0.26* 1.00          

Exc-Na 0.07 0.39** 0.41** 0.31* -0.23 0.13 1.00         

Water-K 0.19 0.07 0.13 0.10 -0.08 0.01 0.39** 1.00        

Exc-K 0.31* -0.02 0.12 0.13 0.01 0.15 0.42** 0.85** 1.00       

NE-K 0.24 0.32* 0.34** 0.39** -0.50** 0.26* 0.47** 0.38** 0.20 1.00      

Avail-K 0.31* -0.02 0.12 0.13 0.01 0.14 0.42** 0.86** 1.00 0.21 1.00     

K Saturation 0.09 -0.21 -0.27* -0.11 0.23 0.07 0.21 0.67** 0.87** -0.03 0.87** 1.00    

Potential K 0.36** 0.14 0.21 0.30* -0.16 0.28* 0.52** 0.66** 0.82** 0.37** 0.82** 0.65** 1.00   

Elevation -0.54** -0.49** -0.59** -0.63** 0.59** -0.33** -0.24 -0.15 -0.11 -0.54** -0.11 0.19 -0.32* 1.00  

Slope -0.44** -0.42** -0.44** -0.56** 0.37** -0.30* -0.29* -0.19 -0.19 -0.55** -0.19 -0.02 -0.36** 0.73** 1.00 

AReK 0.03 -0.07 -0.10 -0.08 0.02 0.004 0.26 0.84** 0.79** 0.21 0.80** 0.70** 0.59** 0.15 0.11 

Remarks: *) p-value <0.05; **) p-value < 0.01 
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Table 4. Results of the Random Forest model of the "rf" 
method of default 

Parameter 
(mtry) 

RMSE R2 MAE 

2 0.724 0.287 0.520 
6 0.718 0.294 0.512 

11 0.723 0.267 0.513 

 
Table 5.  Results of the Random Forest model of the "ranger" 

method of default 

Parameter 
(mtry) 

Splitrule RMSE R2 MAE 

2 variance 0.725 0.303 0.520 
2 extratrees 0.688 0.358 0.501 
6 variance 0.723 0.288 0.516 
6 extratrees 0.666 0.379 0.480 

11 variance 0.719 0.276 0.510 
11 extratrees 0.647 0.397 0.468 

 
Table 6.  Results of the Random Forest model of the "rf" 

method of tuned 

Parameter 
(mtry) 

RMSE R2 MAE 

1 0.7162 0.3061 0.5207 
2 0.7144 0.3073 0.5129 
3 0.7205 0.2881 0.5155 
4 0.7175 0.2983 0.5105 
5 0.7187 0.3132 0.5107 
6 0.7188 0.2905 0.5106 
7 0.7197 0.2793 0.5131 
8 0.7187 0.2866 0.5115 
9 0.7181 0.2874 0.5096 

10 0.7153 0.2826 0.5091 
11 0.7236 0.2715 0.5107 

 

4. DISCUSSION 
The RF, Cubist, and SVM model approaches were used to 

predict the activity ratio K in equilibrium (AReK), and the MLR 
model served as the baseline. The Cubist model showed the 
smallest average RMSE and MAE, and the greatest model fit 
(R2) compared to SVM and RF. The greatest average MAE 
value was obtained from the SVM model, while the RF model 
showed the highest average RMSE among all tested models. 
Considering these evaluation results, the Cubist model 
emerged as the best-performing model in predicting AReK. In 
this study, the Cubist and RF models showed different 
performances in predicting response variables. 

This result differs from the findings of Zhou et al. (2019), 
who predicted the shear strength of rockfill materials, stating 
that the Cubist and RF models had the same prediction 
performance. While some studies have shown RF to 
outperform Cubist under specific conditions (Drzewiecki, 
2016), others have demonstrated superior accuracy of the 
Cubist model in predicting environmental and soil variables 
such as total nitrogen, organic carbon, and CEC (Ludwig et al., 
2022; Wu et al., 2022).  

 
 
 

Table 7. Results of the Random Forest model of the "ranger" 
method of tuned 

mtry Node.size ntree OOB_RMSE 

2 7 500 0.7339 
2 7 400 0.7355 
5 13 400 0.7356 
5 11 400 0.7358 
5 9 400 0.7363 
5 15 400 0.7364 
8 5 500 0.7365 
8 9 500 0.7366 
8 7 500 0.7367 
8 7 500 0.7369 

 
Table 8. Results of the SVM model of default 

C RMSE R2 MAE 

0.25   0.7135  0.2697 0.5179 
0.50 0.7002  0.2646 0.5132 
1.00   0.6916 0.2757 0.5078 

 
The superior performance of the Cubist model in this 

study is likely attributed to its combined modeling approach, 
which integrates rule-based decision trees with linear 
regression models applied at the terminal segments of the 
tree structure. This design allows the Cubist model to 
effectively capture both linear and piecewise-linear 
relationships, which is particularly advantageous for soil 
datasets that often exhibit local linear patterns within 
broader variability. Additionally, the relatively small sample 
size (n=61) used in this study may have favored Cubist, as it 
tends to generalize better than more complex models such as 
RF or SVM in data-limited conditions. This performance is 
consistent with findings from other studies reporting the 
advantage of Cubist modeling in soil properties estimation 
using relatively small and linear datasets (John et al., 2020; 
Ludwig et al., 2022). 

The MLR model performed comparably to Cubist model in 
this study, suggesting that a simpler and more interpretable 
model is sufficient to capture most of the variability in AReK 
under predominantly linear conditions. Thus, in context with 
limited data and clear linear structure, MLR may serve as an 
efficient and robust alternative. However, ML approaches 
such as Cubist remain valuable in broader applications 
involving nonlinear dynamics or complex interactions 
between predictors and response variables, especially in 
areas with spatial and soil-related variability. Furthermore, 
the Cubist model produces outputs that are more 
interpretable compared to models with less algorithmic 
transparency, such as SVM, thus offering practical advantages 
for decision-making in agricultural land management. These 
results confirm that the Cubist model not only outperforms 
RF, SVM, and MLR in this specific context, but also stands out 
as the most suitable modeling approach for predicting AReK 
in relatively small and heterogeneous soil datasets.  
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Table 9. Results of the SVM model of tuned 

Sigma C RMSE R2 MAE 

0.05 0.2   0.7066   0.3714   0.5166 
0.05 0.3 0.6864   0.3763   0.5000 
0.05 0.4   0.6720   0.3822   0.4901 
0.05 0.5   0.6619   0.3855   0.4843 
0.06 0.2   0.7077   0.3530   0.5156 
0.06 0.3   0.6895   0.3553   0.5015 
0.06 0.4   0.6785   0.3588   0.4943 
0.06 0.5   0.6714   0.3585   0.4907 
0.07 0.2   0.7092   0.3372   0.5160 
0.07 0.3   0.6921   0.3381   0.5028 
0.07 0.4   0.6850   0.3380   0.4992 
0.07 0.5   0.6791   0.3377   0.4965 
0.08 0.2   0.7108   0.3234   0.5168 
0.08 0.3   0.6950   0.3235  0.5046 
0.08 0.4   0.6899   0.3219   0.5027 
0.08 0.5   0.6849   0.3212   0.5012 
0.09 0.2   0.7122   0.3119   0.5177 
0.09 0.3   0.6976   0.3114   0.5063 
0.09 0.4   0.6937   0.3089   0.5056 
0.09 0.5   0.6893   0.3085   0.5049 
0.10 0.2   0.7137  0.3023   0.5186 
0.10 0.3   0.6997   0.3017   0.5081 
0.10 0.4   0.6964   0.2986   0.5077 
0.10 0.5   0.6925   0.2985   0.5076 

 
Table 10. Cubist model results (default) 

Model Cases Attributes Committees Neighbors MAE RMSE R2 

Cubist 48 12 10 5 0.4738 0.6823 0.8863 

 
Table 11. Results of the Cubist model (tuned) 

Model Cases Attributes Committees Neighbors MAE RMSE R2 

Cubist 48 12 5 4 0.3514 0.5701 0.9437 

 

Table 12.  The validation datasets results 

Model R2 RMSE MAE 

RF (rf method) 
Default Model 0.6193 1.2044 0.7438 
Tuned Model 0.3009 1.3511 0.8386 

RF (ranger method) 
Default Model 0.8214 0.9944 0.6513 
Tuned Model 0.3534 1.3396 0.8325 

SVM 
Default Model 0.3538 1.3583 0.8490 
Tuned Model 0.3734 1.2842 0.8395 

Cubist 
Default Model 0.8863 0.6823 0.4738 
Tuned Model 0.9437 0.5701 0.3514 

MLR 0.9076 0.5255 0.3784 
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Figure 3. Relative importance variable for AReK using RF model “rf” method (a), RF model “ranger” method (b), Cubist (c), and 

MLR model (d) 
 

Based on the results of four machine learning models, soil 
properties variables such as Exc-K, Exc-Mg, CEC, Exc-Ca, and 
NE-K contribute to predicting AReK. These results indicate 
that soil properties variables provide a greater contribution 
compared to environmental variables, in this case, elevation 
and slope gradient. One factor that supports this finding is 
that most of the research data was obtained from locations 
with flat topography, so environmental variability has no or 
negligible effects. These results were consistent with previous 
research (John et al., 2020), which found that environmental 
variables do not affect soil organic carbon levels on flat 
topography in Calabar, Cross River State. 

Soil properties serve an important function in determining 
the forms of soil K (Li et al., 2021), including AReK. One of the 
main soil properties that influences is CEC. The soil at the 
research location had an average soil CEC in the high 
category, has a clay texture, and contains 2:1 type clay 
mineral (Nadalia et al., 2024). Clay affects soil CEC, where soil 
dominated by clay fractions had a higher CEC and water-
holding capacity. The type of clay mineral also plays an 
important role in determining soil CEC. At the study site, 
Inceptisols contain smectite or vermiculite minerals, which 
contribute to elevated CEC values than soils dominated by 
kaolinite or other mineral combinations. Soil containing illite 
and vermiculite minerals had a high capacity to bind K into the 

non-exchangeable K form (NE-K), so in soil containing these 
minerals, AReK could be lower even though the total K was 
high. In addition to Exc-K, NE-K could make a reasonably high 
contribution to increasing AReK in the soil (Islam et al., 2023; 
Panda & Patra, 2018) and K nutrient uptake (Al Viandari et al., 
2024). Hartati et al. (2018) reported a positive correlation 
between K uptake with total K and available K. 

In addition, magnesium nutrients also affect the dynamics 
of adsorption and desorption of other cations, including K, 
thus affecting the availability of K for plants (Al–Obaidi & 
Syan, 2022; Laekemariam et al., 2018; Xie et al., 2021). This 
condition is relevant in soil with a 2:1 clay mineral type 
content, where the space between clay mineral layers can 
trap K into NE-K. The presence of high amounts of 
exchangeable Ca and Mg may displace K from exchange sites, 
leading to greater desorption of K into the soil solution and 
thereby increasing AReK (Kassa et al., 2021). However, as 
reported by Han et al. (2019) and Schneider et al. (2016), high 
Ca concentrations in the soil solution can reduce K uptake by 
plants. This is caused due to K displacement from the 
exchange site, which potentially causing K leaching and 
promoting selective Ca uptake through mass flow. This dual 
mechanism illustrates that, while Ca and Mg may enhance 
AReK in the soil, excessive concentrations can suppress K 
availability to plants through ionic competition. 
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The use of RF, SVM, and Cubist approaches to predict AReK 
had limitations that should be resolved in continued research. 
First, one of the limitations of the RF, SVM, and Cubist models 
was the relatively small dataset size; only 61 data were used 
in the modeling. To improve the validity and reliability of the 
model, analysis on a greater dataset is utterly needed. 
Second, other local environmental parameters (e.g., in situ 
temperature, rainfall, soil moisture) and clay mineral 
composition can affect AReK, as well as further exploration of 
other hyperparameters of the RF, SVM, and Cubist models, 
which can improve model performance. Finally, other 
supervised machine learning techniques with superior results 
in modeling nonlinear relationships, such as Gaussian Process 
Regression (GPR), and Artificial Neural Networks (ANN), have 
not entirely been studied and compared for AReK prediction. 
Optimal prediction results are highly dependent on the data 
quantity and quality. Although the Cubist model provides the 
most accurate prediction results, this study did not evaluate 
its transparency or usability for non-technical users like 
farmers or extension workers. The model was intended to 
simplify complex laboratory procedures for determining AReK 

using easily measurable soil and environmental variables. To 
ensure broader field applicability, particularly for site-specific 
fertilizer recommendations, future research focus on 
developing decision-support tools or user-friendly 
applications that translate the model outputs into practical 
guidance. This is essential to ensure that the predictive 
advantages of the Cubist model can be effectively utilized in 
nutrient management strategies tailored for agricultural 
stakeholders. 

 

5. CONCLUSION 
The research found that the Cubist model (R2= 0.9437; 

RMSE= 0.5701; MAE= 0.3514) predicted AReK better than 
MLR, SVM, and RF in agricultural land in Brebes Regency, 
Central Java. Soil properties (Exc-K, Exc-Mg, CEC, Exc-Ca, and 
NE-K) were considered important variables in AReK prediction 
in this study. This ML approach in predicting AReK can support 
site-specific K fertilizer recommendations for the agricultural 
land of Brebes regency. Future studies should improve the 
accuracy of the model by expanding the dataset, adjusting 
hyperparameters, or incorporating new predictive variables 
(e.g., soil properties, clay minerals, climate factors).  
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