RISET PENDIDIKAN KIMIA UNTUK PEMBANGUNAN BERKELANJUTAN: DARI KONTEN TRADISIONAL KE KONTEKS MULTIDISIPLIN

Erman Erman

Abstract

Penelitian pendidikan kimia pada dasarnya adalah penelitian pembelajaran kimia dan semua aspek yang terkait. Makalah ini bertujuan untuk menjelaskan ekspansi riset pendidikan kimia untuk pembangunan berkelanjutan melalui ekspansi pembelajaran kimia dari konten tradisional menuju konteks yang multidisiplin. Penelitian pendidikan kimia selama ini lebih fokus pada penguasaan konten dengan tujuan akhir meningkatkan hasil belajar, mengatasi kesulitan belajar dan miskonsepsi. Dalam pembelajaran kimia berbasis konteks tidak lagi fokus pada konten melainkan pada konteks yang bersifat interdisipliner dan holistik. Tantangan utama dalam pembelajaran berbasis konteks adalah kemampuan transformasi antar konteks, memerlukan pengetahuan awal kimia yang memadai dan pengetahuan interdisipliner, dan belajar bermakna. Selain itu, konteks pada umum bersifat makroskopik dan tidak eksplisit sehingga memerlukan pengetahuan multidiplin yang holistic. Ada 4 strategi untuk ekspansi pembelajaran kimia dari konten menjadi berbasis konteks, yaitu: menambahkan dimensi kemanusian dalam kurikulum, yaitu: aspek social, ekonomi, dan lingkungan yang mendukung pembangunan berkelanjutan, membangun mindset peneliti dan pendidik kimia untuk berkontribusi dalam pembangunan berkelanjutan, menggunakan pembelajaran kimia berbasis konteks, dan memasyarakatkan kimia dalam kehidupan social sejak usia dini. Penelitian-penelitian pendidikan kimia yang menggunakan studi kasus, penelitian pengembangan, dan pendekatan interdisipliner dengan fokus utama mengatasi masalah-masalah autentik untuk pembangunan berkelanjutan.

Full Text:

PDF

References

Bybee, R.W. (1997). Achieving Scientific Literacy: From Purposes to Practices. Porstmouth: NH Heinmann Publishing.

Davidson, C. I., Matthews, H. S., Hendrickson, C. T., Bridges, M. W., Allenby, B. R., & Crittenden, J. C., Viewpoint: Adding Sustainability to theEngineer’s Toolbox: A Challenge for Engineering Educators, Environmental Science & Technology, 41(14), 2007, 4847-4849. doi: 10.1021/es072578f

Dewey, J. 1944.

Duit, R. (1999). Teachers use of analogies in regular teaching routine. Journal of Research in Science Teaching, 30(5), 165-176.

Eilks, I., & Rauch, F., Sustainable development and green chemistry in chemistry education, Chemistry Education Research and Practice, 13(2), 57-58, 2012.

Erman, E. 2005. Pertimbangan kemampuan berpikir siswa ditinjau dari teori Piaget. Ulul Albab, 6(2), 39-58

Erman, E. (2017). Factors contributing to students’ misconception in learning covalent bonds. Journal of Research in Science Teaching, 54 (4), 520-537

Erman, E. & Liliasari, L. (2012). Exercise to analyze sports cases to improve mastery of the biochemical concepts of sports science students. Jurnal Pendidikan dan Pembelajaran, 19(1), 94-101.

Erman, E., Susantini, E., Wasis, & Azizah, U. (2018). Scientific thinking skills: Why junior high school science teachers cannot use discovery and inquiry models in classroom. Atlantis Press, 1

Erman, E. & Sari, D.A.P. (2019). Science in a black box: Can teachers address science from socio-scientific issues? Journal of Physics: Conference series (doi: 10.1088/17742-6596/1417/1/012093.

Erman, E., Liliasari, L., Ramdani, M. & Wakhidah, N. (2020). Addressing macroscopic issues: Helping student from association between biochemistry and sports and aiding their scientific literacy. International Journal of Science and Mathematics Education, 18(5), 831-853.

Fullan, M. & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning. London: Pearson.

Glynn, S.M. (1998). Using analogies to explain scientific concept. Journal of Research in Science Teaching, 31(5), 25-27.

Herron, J.D. (1975). Piaget for chemist; explaining what good student cannot understand. Journal of Chemical Education, 52, 146-150.

Ismono. (2019). Development of the paksi learning model to train higher-order thinking abilities of chemistry education students (Unpublish dissertation). Surabaya: Postgraduate School

Johnstone, A.H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal ofComputer Assisted Learning, 7, 75-83.

Jusniar, 2020. Pengembangan strategi pembelajaran engagement, modification, building concept, evaluation-reflection (SP-EMBE-R) (Disertasi tidak dipublikasikan). Malang: Pascasarjana UM

Kaplus, R. (1977). Science teaching and the development of reasoning. Journal of Research in Science Teaching, 42, 169-175.

Lawson, A. E. (1993). The importance of analogy: A Prelude to special issues. Journal of Research in Science Teaching, 30(9), 1213-1214.

Linn, M.C. & Elyon, B.S. (2006). Science Education: Integrating view of learning and instruction. in P.A. Alexander & P.H. Winne (Eds), Handbook of Educational Psychology (2nd ed.) (pp. 511-544). Mahwah, NJ: Erlbaum.

Lozano, R., 2008. Envisioning sustainability three-dimensionally, Journal of Cleaner Production, 16(17), 1838-1846

Lozano, R., 2010. Diffusion of sustainable development in universities’ curricula: an empirical example from Cardiff University, Journal of Cleaner Production, 18(7), 637-644, doi: http://dx.doi.org/10.1016/j.jclepro.2009.07.005

Lozano, R. & Watson, K.R. 2013. Chemistry education for sustainability: Assessing the chemistry curricula at

Cardiff University. Educ Quim, 24(2), 184-192

Mahaffi, P. 2004. The future shape of chemical education. Chemistry Education Research and Practice, 5(3), 229-245.

Martini & Erman, E. (2009). The constructivist Intervention in Biochemical Course Material to Train Students Understand Abstract Concepts (Unpublication Research Report). Surabaya: LPPM Unesa

Mayer, R.E. (2002). Rote versus meaningful learning. Theory into Practice, 41(4), 226-232.

Novak, J.D. & Gowin, D.B. 1984. Learning how to learn. New York: Cambridge University Press.

OECD (2017). PISA 2015 science framework. In PISA 2015 assessment and analytical framework science, reading, mathematic, financial literacy and collaborative problem solving. Paris: OECD Publishing

Parchman, I. 2009. Chemie im Kontext. Educacio Quimica EduQ, 2, 24-31.

Passos, R.M., Se, A.B., Wolff, V.L., Nobrega, Y.K., & Hermes-Lima, M. (2006). Pizza and pasta help students learn metabolism. Adv. Physiol Educ, 30(2), 89-93.

Potter, N.M. & Overton, T.L. (2006). Chemistry in sport: context-based e-learning in chemistry. Chemistry Education Research and Practice, 7 (3), 195-202.

Salzmann, O., Ionescu-Somers, A., & Steger, U., 2003. E business case for

corporate sustainability - Review of the literature and research options: IMS/CSM.

Taber, K.S. (2003). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20, 597-608.

Wiseman, F.L. (1981). The Teaching of College Chemistry: Role of Student Development Level, Journal of Chemical Education, 58, 484 – 488.

Wooley, J.S., Deal, A.M., Green, J., Hathenbruck, F., Kurtz, S.A., Park, T.K.H., Pollock, S.V., Transtrum, M.B., & Jensen, J.L. (2018). Undergraduate Students Demonstrate Common False Scientific Reasoning Strategies. Thinking Skills and Creativity, 27, 101-113.

Refbacks

  • There are currently no refbacks.