Analisis arah perkembangan fisik kawasan terdampak gempa di Kabupaten Sleman berbasis Nighttime Light
Abstract
Pascagempa tektonik tahun 2006, Kabupaten Sleman mengalami perubahan spasial yang signifikan seiring dengan proses rehabilitasi dan rekonstruksi wilayah. Penelitian ini difokuskan pada empat kecamatan dengan dampak terbesar, yaitu Kecamatan Berbah, Kalasan, Depok, dan Prambanan. Tujuan penelitian ini adalah mengidentifikasi arah perkembangan fisik kawasan terbangun di wilayah terdampak gempa menggunakan kombinasi data citra cahaya malam (Nighttime Light) terharmonisasi dan pendekatan zonasi spasial clockboard. Analisis dilakukan secara longitudinal dengan memanfaatkan data DMSP-OLS dan VIIRS tahun 2006, 2007, 2013, 2018, dan 2023. Hasil penelitian menunjukkan bahwa arah dominan perkembangan fisik wilayah bergerak ke arah utara dan timur laut, menjauhi zona rawan gempa yang berasosiasi dengan Sesar Opak. Intensitas cahaya tertinggi teridentifikasi pada ring B dan sektor timur laut, yang mengindikasikan pola pertumbuhan spasial yang mempertimbangkan aspek keamanan dan aksesibilitas. Pendekatan kombinatif antara Nighttime Light dan clockboard terbukti efektif dalam memetakan dinamika spasial pascabencana dan berpotensi diterapkan pada wilayah rawan bencana lainnya. Temuan ini memberikan kontribusi terhadap pengembangan metode analisis spasial berbasis bukti untuk mendukung perencanaan wilayah yang adaptif dan tangguh bencana.
Keywords
Full Text:
PDFReferences
[1]Listikarini DI, Harlan E. The Impact of Yogyakarta International Airport (YIA) Development on the Economy in the Special Region of Yogyakarta: Input-Output Analysis. EKO-REGIONAL: Jurnal Pembangunan Ekonomi Wilayah 2024;19. https://doi.org/10.32424/er.v19i2.15038.
[2]Zulkifli R, Muhardi M, Perdhana R. Analisis Struktur Geologi Bawah Permukaan di Kabupaten Sleman dan Sekitarnya. JGE (Jurnal Geofisika Eksplorasi) 2024;10:162–73. https://doi.org/10.23960/jge.v10i2.326.
[3]Trisilia MS, Sugiyanto C, Rifa’i A. Impact of natural disasters on mental health and welfare: the case of the 2006 Yogyakarta earthquake. Discover Psychology 2024;4. https://doi.org/10.1007/s44202-023-00112-3.
[4]UNITAR-UNOSAT. UNOSAT: The United Nations Satellite Centre. Https://UnitarOrg/Sustainable-Development-Goals/United-Nations-Satellite-Centre-UNOSAT 2024. https://unitar.org/sustainable-development-goals/united-nations-satellite-centre-UNOSAT.
[5]Heanoy EZ, Brown NR. Impact of Natural Disasters on Mental Health: Evidence and Implications. Healthcare 2024;12:1812. https://doi.org/10.3390/healthcare12181812.
[6]First JM. Post-traumatic stress and depression following disaster: examining the mediating role of disaster resilience. Front Public Health 2024;12. https://doi.org/10.3389/fpubh.2024.1272909.
[7]Badan Pengelola Geopark Gunung Sewu. Rayapan Tanah Nglepen. Geopark Jogja 2023.
[8]Asgary A, Naeemi P, Ganguli N, Tofighi M, Attarian K, Fioretto T. Road to Resettlement: Understanding Post-disaster Relocation and Resettlement Challenges and Complexities Through a Serious Game. International Journal of Disaster Risk Science 2024;15:521–35. https://doi.org/10.1007/s13753-024-00580-8.
[9]Yuan Y, Wang C, Liu S, Chen Z, Ma X, Li W, et al. The Changes in Nighttime Lights Caused by the Turkey–Syria Earthquake Using NOAA-20 VIIRS Day/Night Band Data. Remote Sens (Basel) 2023;15. https://doi.org/10.3390/rs15133438.
[10]Zheng Q, Seto KC, Zhou Y, You S, Weng Q. Nighttime light remote sensing for urban applications: Progress, challenges, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing 2023;202:125–41. https://doi.org/10.1016/j.isprsjprs.2023.05.028.
[11]Li S, Cao X, Zhao C, Jie N, Liu L, Chen X, et al. Developing a Pixel-Scale Corrected Nighttime Light Dataset (PCNL, 1992–2021) Combining DMSP-OLS and NPP-VIIRS. Remote Sens (Basel) 2023;15:3925. https://doi.org/10.3390/rs15163925.
[12]Chen Z, Yu B, Yang C, Zhou Y, Yao S, Qian X, et al. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst Sci Data 2021;13:889–906. https://doi.org/10.5194/essd-13-889-2021.
[13]Li X, Zhou Y, Zhao M, Zhao X. A harmonized global nighttime light dataset 1992–2018. Sci Data 2020;7:168. https://doi.org/10.1038/s41597-020-0510-y.
[14]Afrianto F, Fathiyaturahma A, Purwono N. Nighttime Light Imagery Analysis: Big Data Approaches for Urban Planning. Citieslab 2024;4.
[15]Afrianto F, Rendra Graha DT. Morfologi Kota Malang: Sebuah Tinjauan dari Nighttime Light Satellite Imagery. Jurnal Plano Buana 2023;3:68–76. https://doi.org/10.36456/jpb.v3i2.7002.
[16]Lovelace R, Tennekes M, Carlino D. ClockBoard: A Zoning System for Urban Analysis. Journal of Spatial Information Science 2022:63–85. https://doi.org/10.5311/JOSIS.2022.24.172.
[17]Elvidge CD, Baugh K, Zhizhin M, Hsu FC, Ghosh T. VIIRS Night-Time Lights. Int J Remote Sens 2017;38:5860–79. https://doi.org/10.1080/01431161.2017.1342050.
[18]Yunus HS. Struktur Tata Ruang Kota. Yogyakarta: Pustaka Pelajar; 2004.
[19]Black J. Urban Transport: Planning Theory and Practice. London: Croom Helm; 1981.
[20]Hoyt H. Structure and Growth of Residential Neighborhoods in American Cities. Washington DC: Federal Housing Administration; 1939.
[21]Branch MC. Comprehensive Planning for the 21st Century: General Theory and Principles. Westport: Praeger Publisher; 1998.
Refbacks
- There are currently no refbacks.

.png)

.jpg)









