Solusi Analitik Persamaan Schrodinger Terdedeformasi-q dengan Potensial Kratzer dalam Sistem Koordinat Bispherical Menggunakan Metode SUSYQM

Dedy A Bilaut, C Cari, A Suparmi, Miftahul Ma’arif

Abstract

Abstract: The analytical solution of the Schrodinger equation affected by Kratzer potential in Bispherical coordinate system was derived. The separable method was applied to reducing the Schrodinger equation which depends on  into three one-dimensional Schrodinger equations. The Schrodinger equations as the function of  with and without -deformed were solved using the SUSY QM method. The solutions were eigenvalue and eigenfunction of -deformed Schrodinger equation and eigenvalue end eigenfunction of Schrodinger equation with and without q-deformed in Bispherical coordinate system. The energy of the Schrodinger equation with -deformed equals to the Energy of Schrodinger without -deformed since the  parameter becomes to zero.

Abstrak: Solusi analitik dari Persamaan Schrodinger yang dipengaruhi Potensial Kratzer dalam koordinat Bispherical telah berhasil diturunkan. Metode pemisahan variabel digunakan untuk mereduksi persamaan Schrodinger yang bergantung pada  menjadi tiga persamaan Schrodinger satu dimensi. Persamaan Schrodinger fungsi  terdeformasi- dan tidak terdeformasi- diselesaikan menggunakan metode SUSY QM. Solusi yang berhasil didapatkan adalah nilai eigen dan fungsi eigen persamaan Schrodinger, masing-masing untuk sistem terdeformasi- dan yang tidak terdeformasi- dalam koordinat Bispherical. Energi dari persamaan Schrodinger terdeformasi- sama dengan energi dari persamaan Schrodinger yang tidak terdeformasi- ketika  sama dengan nol.

Keywords

Persamaan Schrodinger, Solusi eigen, Potensial Kratzer, Koordinat Bispherical, SUSY QM

Full Text:

PDF

References

Abu-Shady, M., & Ikot, A. N. (2019). Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. European Physical Journal Plus, 134(7).

Alvarez-Cas, Tillo, D. E., & Kirchbach, M. (2007). Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials. Revista Mexicana De Fisica, 53(2), 143–154.

Anthonys, G. (2018). Analytical solutions for two ferromagnetic nanoparticles immersed in a magnetic field: Mathematical model in bispherical coordinates. In Synthesis Lectures on Electrical Engineering.

Atre, R., Kumar, A., Kumar, N., & Panigrahi, P. K. (2004). Quantum-information entropies of the eigenstates and the coherent state of the Poschl-Teller potential. PHYSICAL REVIEW A, 65(5), 1–6.

Awoga, O. A., & Ikot, A. N. (2012). Approximate solution of Schrodinger equation in D dimensions for inverted generalized hyperbolic potential. Pramana - Journal of Physics, 79(3), 345–356.

Belov, V. V., Dobrokhotov, S. Y., & Tudorovskii, T. Y. (2004). Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes: I. Reduction to spatially one-dimensional equations. Theoretical and Mathematical Physics, 141(2), 1562–1592.

Berkdemir, C., Berkdemir, A., & Han, J. (2006). Bound state solutions of the Schrodinger equation for modified Kratzer’s molecular potential. Chemical Physics Letters, 417(4–6), 326–329.

Cheng, Y. F., & Dai, T. Q. (2007). Exact Solution Of The Schrödinger Equation For The Modified Kratzer potential Plus A Ring-Shaped Potential By The Nikiforov-Uvarov Method. Physica Scripta, 75(3), 274–277.

Durmus, A., & Yasuk, F. (2007). Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential. Journal of Chemical Physics, 126(7).

Dutt, R., Gangopadhyaya, A., & Sukhatme, U. P. (1997). Noncentral potentials and spherical harmonics using supersymmetry and shape invariance. American Journal of Physics, 65(5), 400–403.

Ebomwonyi, O., Onate, C. A., Onyeaju, M. C., & Ikot, A. N. (2017). Any l−states solutions of the Schrödinger equation interacting with Hellmann-generalized Morse potential model. Karbala International Journal of Modern Science, 3(1), 59–68.

Encinosa, M., & Etemadi, B. (2002). Power series Schrodinger eigenfunctions for a particle on the torus. 32307. Retrieved from http://arxiv.org/abs/quant-ph/0205001

Faniandari, S., Suparmi, A., & Cari, C. (2020). Analytical Solution of Schrodinger Equation For Yukawa Potential with Variable Mass in Toroidal Coordinate Using Supersymmetric Quantum Mechanics. Periodico Tche Quimica, 17, 100–108.

Ferrari, G., & Cuoghi, G. (2008). Schrödinger equation for a particle on a curved surface in an electric and magnetic field. Physical Review Letters, 100(23), 1–4.

Gendenshtein, L. E. (1984). by equation of the Schr0dinger of exact spectra Derivation of supersymmetry means. Pis’ma Zh. Eksp. Teor. Fiz., 38(6), 356–359.

Gendenshteĭn, L., & Krive, I. V. (1985). Supersymmetry in quantum mechanics. Soviet Physics - Uspekhi, 28(8), 645–666.

Hassanabadi, H., Ikot, A. N., & Zarrinkamar, S. (2014). Exact solution of Klein-Gordon with the Pöschl-Teller Double-Ring-Shaped Coulomb Potential. Acta Physica Polonica A, 126(3), 647–651.

Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S., & Rahimov, H. (2011). An approximate solution of the Dirac equation for hyperbolic scalar and vector potentials and a Coulomb tensor interaction by susyqm. Mod. Phys. Lett. A, 26(36), 2703–2718.

Ikhdair, S. M., & Sever, R. (2007). Exact solutions of the radial Schrödinger equation for some physical potentials. Central European Journal of Physics, 5(4), 516–527.

Ikot, A. N., Okorie, U., Ngiagian, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., & Amadi, P. O. (2020). Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method. Eclética Química Journal, 45(1), 65–76.

Isonguyo, C., Okon, I. B., Ikot, A. N., & Hassanabadi, H. (2014). Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM. Korean Chem. Soec., 35(12).

Karayer, H. H. (2019). Analytical solution of D-dimensional radial Schrödinger equation for sextic potential by the extended Nikiforov–Uvarov method and biconfluent Heun polynomials. Turkish Journal of Physics, 43(4), 410–416.

Kocak, G., Bayrak, O., & Boztosun, I. (2012). Supersymmetric solution of Schrödinger equation by using the asymptotic iteration method. Annalen Der Physik, 524(6–7), 353–359.

Krejčiřík, D., & Raymond, N. (2014). Magnetic Effects in Curved Quantum Waveguides. Annales Henri Poincare, 15(10), 1993–2024.

Mir-Kasimov, R. M. (2013). Factorization method for Schrödinger equation in relativistic configuration space and q-deformations. Physics of Particles and Nuclei, 44(3), 422–436.

Moon, P., & Spencer, D. E. (1971). Field Theory Handbook : Including Coordinate Systems, Differential Equations and Their Solutions (3rd ed.).

Morse, P. M., & Herman, F. (1953). Methods Of Theoretical Physics. New York: McGraw-Hill.

Rasinariu, C., Mallow, J. V., & Gangopadhyaya, A. (2007). Exactly solvable problems of quantum mechanics and their spectrum generating algebras: A review. Central European Journal of Physics, 5(2), 111–134.

Shishan, D., Dong, S., Bahlouli, H., & Bezerra, V. B. (2011). Algebraic Approach To The Klein Gordon Equation With Hyperbolic Scarf Potential. 20(1), 55–61.

Sobhani, H., Chung, W. S., & Hassanabadi, H. (2017). Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics. Indian Journal of Physics, 92(4), 529–536.

Suparmi, A., Cari, C., & Faniandari, S. (2020). Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified Woods–Saxon and Eckart potentials in toroidal coordinate. Molecular Physics.

Suparmi, A., Dianawati, D. A., & Cari, C. (2020). Hypergeometric method for Klein-Gordon equation with q-deformed quantum mechanics on coulomb potential. Journal of Physics: Conference Series, 1511(1).

Suparmi, & Cari. (2014). Bound state solution of dirac equation for generalized pöSchl-Teller plus trigomometric Pöschl-Teller Non-Central potential using SUSY quantum mechanics. Journal of Mathematical and Fundamental Sciences, 46(3), 205–223.

Taskin, F., & Kocakt, G. (2010). Approximate solutions of Schrodinger equation for Eckart potential with centrifugal term. Chinese Physics B, 19(9), 1–6.

Yasuk, F., Durmus, A., & Boztosun, I. (2006). Exact analytical solution to the relativistic Klein-Gordon equation with noncentral equal scalar and vector potentials. Journal of Mathematical Physics, 47(8).

Zhang, Y., Liang, H. Z., & Meng, J. (2009). Solving the dirac equation with nonlocal potential by imaginary time step method. Chinese Physics Letters, 26(9), 2007–2010.

Refbacks

  • There are currently no refbacks.