Implementasi multiple representation pada rangkaian listrik DC sebagai upaya meningkatkan problem solving skills

Maria Dewati, A Suparmi, Widha Sunarno, Sukarmin Sukarmin, C. Cari

Abstract

Abstract: The low understanding of physics concepts, especially in DC electrical circuits which are considered abstract material, causes students difficulty in solving various problems in learning. Various attempts were made, one of which used a representation approach. This literature review article aims to observe the implementation of multiple representations (MR) in physics learning, which is considered capable of improving problem-solving skills in learning. The results showed that students who used MR a lot in each of their learning processes found it easier to understand physics concepts and were able to solve problems than students who did not use MR in their learning process. So that MR is considered as a physics learning approach tool that is able to improve students' problem-solving skills.

Abstrak: Rendahnya pemahaman konsep fisika terutama pada rangkaian listrik DC yang dianggap materi yang bersifat abstrak, menyebabkan siswa kesulitan dalam menyelesaikan berbagai masalah dalam belajar. Berbagai upaya dilakukan, salah satunya dengan menggunakan pendekatan representasi. Artikel literature review ini bertujuan untuk menyoroti implementasi multiple representation (MR) pada pembelajaran fisika, yang dianggap mampu meningkatkan keterampilan pemecahan masalah dalam belajar. Hasil penelitian menunjukkan bahwa siswa yang banyak menggunakan MR dalam setiap proses belajarnya, ternyata lebih mudah memahami konsep fisika dan mampu memecahkan masalah daripada siswa yang tidak menggunakan MR dalam belajarnya. Sehingga MR dianggap sebagai alat pendekatan pembelajaran fisika yang mampu meningkatkan problem solving skills siswa.

Keywords

multiple representation, problem solving skills, rangkaian listrik DC

Full Text:

PDF

References

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and instruction, 16(3), 183-198.

Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 33(6046), 1096-1097

Alshamali, M. A., & Daher, W. M. (2016). Scientific Reasoning and Its Relationship with Problem Solving : the Case of Upper Primary Science Teachers. International Journal of Science and Mathematics Education, 1003–1019. https://doi.org/10.1007/s10763-015-9646-1

Angell, C., Kind, P. M., Henriksen, E. K., & Guttersrud, Ø. (2008). An empirical-mathematical modelling approach to upper secondary physics. Physics Education, 43(3), 256.

Bascones, J., & Novak, J. D. (n.d.). European Journal of Science Alternative instructional systems and the development of problem ‐ solving skills in physics Alternative instructional systems and the development of problem-solving skills in physics, (June 2013), 37–41.

Brown, B. R., Mason, A., & Singh, C. (2016). Improving performance in quantum mechanics with explicit incentives to correct mistakes, 010121, 1–20. https://doi.org/10.1103/PhysRevPhysEducRes.12.010121

Cheng, S., She, H., & Huang, L. (2018). The Impact of Problem-Solving Instruction on Middle School Students ’ Physical Science Learning : Interplays of Knowledge , Reasoning , and Problem Solving, 14(3), 731–743. https://doi.org/10.12973/ejmste/80902

Cook, M., Wiebe, E., & Carter, G. (2011). Comparing visual representations of DNA in two multimedia presentations. Journal of Educational Multimedia and Hypermedia, 20(1), 21-42

Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., Hsu, L., Jackson, K. A., … Yang, J. (2016). Assessing student written problem solutions : A problem-solving rubric with application to introductory physics, 010130, 1–18. https://doi.org/10.1103/PhysRevPhysEducRes.12.010130

Dori, Y. J., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students' understanding of electromagnetism concepts?. The journal of the learning sciences, 14(2), 243-279.

Eilam, B., & Poyas, Y. (2014). External Visual Representations in Science Learning : The case of relations among system components External Visual Representations in Science Learning : The case of relations, (December), 37–41. https://doi.org/10.1080/09500690903503096

Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72(1), 98-115.

Friege, G., & Lind, G. (2006). Types and qualities of knowledge and their relations to problem solving in physics, 437–465.

Gerace, W. J., Dufresne, R. J., Leonard, W. J., & Mestre, J. P. (2001, July). Problem solving and conceptual understanding. In Proceedings of the 2001 Physics education research conference (p. 33). Physics Education Research Conference, Annual Conference

Gerace, W. J., & Beatty, I. D. (2005). Teaching vs . Learning : Changing Perspectives on Problem Solving in Physics Instruction, 1–10.

Gick, M. L., & Gick, M. L. (2011). Problem-Solving Strategies Problem-Solving Strategies, (June 2012), 37–41.

Gilbert, J. K. (2009). Multiple representations in chemical education (Vol. 4). D. Treagust (Ed.). Dordrecht: Springer.

Gok, T. (2010). The General Assessment of Problem Solving Processes and Metacognition in Physics Education, 2(2), 110–122.

Heller, J. I., Reif, F., Heller, J. I., & Reif, F. (2015). Prescribing Effective Human Problem-Solving Processes : Problem Description in Physics Prescribing Effective Human Problem- Solving Processes : Problem Description in Physics, 0008(October). https://doi.org/10.1207/s1532690xci0102

Heuvelen, A. Van, Zou, X., Heuvelen, A. Van, & Zou, X. (2001). Multiple representations of work – energy processes Multiple representations of work – energy processes, 184. https://doi.org/10.1119/1.1286662

Josep, J., Benaguasil, S. I. E. S., Tomás, C., De, V., Sanjosé, V., Science, L., & València, U. De. (2007). Cognitive variables in science problem solving : A review of research, 25–32.

Khasanah, N., & Yuliati, L. (2016). Jurnal Pendidikan IPA Indonesia PROBLEMS IN DYNAMICS OF ROTATIONAL MOTION TOPIC, 5(2), 186–191. https://doi.org/10.15294/jpii.v5i2.5921

Kohl, P. B., & Finkelstein, N. D. (2008). Patterns of multipe representation use by experts and novices during physics problem solving. Physical Review Special Topics - Physics Education Research, 4(1), 1–13. https://doi.org/10.1103/PhysRevSTPER.4.010111

Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics - Physics Education Research, 3(1), 1–10. https://doi.org/10.1103/PhysRevSTPER.3.010108

Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.

Larkin, J. H., & Reif, F. (2007). European Journal of Science Education Understanding and Teaching Problem ‐ Solving in Physics Understanding and Teaching Problem- Solving in Physics, (April 2013), 37–41.

Mason, A., & Singh, C. (2010). Surveying graduate students ’ attitudes and approaches to problem solving, (December), 1–16. https://doi.org/10.1103/PhysRevSTPER.6.020124

Mayer R. E. (2002). Rote Versus Meaningful Learning. Theory Into Practice, 41(4), 226–233. Retrieved from http://eds.a.ebscohost.com/eds/pdfviewer/pdfviewer?vid=70&sid=c4c835f7-9431-4b9e-b980-430b230d5df4%40sessionmgr4006

Nguyen, D., & Rebello, N. S. (2011). Students ’ Difficulties With Multiple Representations in Introductory Mechanics *, 8(5), 559–569.

Permatasari, A. K., Istiyono, E., & Kuswanto, H. (2019). Developing Assessment Instrument to Measure Physics Problem Solving Skills for Mirror Topic, 358–366.

Reif, F., Heller, J. I., Reif, F., & Heller, J. I. (2009). Knowledge structure and problem solving in physics Knowledge Structure and Problem Solving in Physics, (April 2013), 37–41.

Riantoni, C., Yuliati, L., & Mufti, N. (2017). Jurnal Pendidikan IPA Indonesia POWER ON STUDENTS AS PHYSICS TEACHER CANDIDATES, 6(1), 55–62. https://doi.org/10.15294/jpii.v6i1.8293

Rosengrant, D., Heuvelen, A. Van, & Etkina, E. (2006). Case Study : Students ’ Use of Multiple Representations in Problem Solving *, 49–53.

Rosengrant, D., Heuvelen, A. Van, Etkina, E., Planinic, M., Susac, A., Ivanjek, L., … Lee, Y. (2017). Case Study : Students ’ Use of Multiple Representations in Problem Solving *, 132(August), 49–53. https://doi.org/10.1063/1.2820914

Schoenfeld, A. H., & Schoenfeld, A. H. (2018). Teaching Problem-Solving Skills, 9890(1980). https://doi.org/10.1080/00029890.1980.11995155

Schijf, H. J. M., & Simon, H. A. (1998). One person: multiple representations: an analysis of a simple, realistic multiple representation learning task. Learning with multiple representations, 197-236

Sutopo, & Waldrip, B. (2014). Impact of a Representational Approach on Students ’. International Journal of Science and Mathematics Education, 12(November 2012), 741–766.

Tms, H., & Sirait, J. (2017). Representations Based Physics Instruction to Enhance Students ’ Problem Solving, (January 2016). https://doi.org/10.12691/education-4-1-1

Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving : Epistemic games, (January), 1–22. https://doi.org/10.1103/PhysRevSTPER.3.020101

Wagner, J. F., Manogue, C. A., & Thompson, J. R. (2012, February). Representation issues: Using mathematics in upper-division physics. In AIP Conference Proceedings (Vol. 1413, No. 1, pp. 89-92). AIP.

Yuliati, L. (2018). Problem Solving Skills on Direct Current Electricity through Inquiry- Based Learning with PhET Simulations, 11(4), 123–138.

Refbacks

  • There are currently no refbacks.