Characteristics Ruthenium (N719) as a Photosensitizer in Dye-Sensitized Solar Cells (DSSC)

Hardani Hardani, C Cari, Agus Supriyanto


Abstract: The study aims to characterize Ruthenium as a photosensitizer in Dye-Sensitized Solar Cells (DSSC). Samples are made in the structure of the working electrode pair Sandwich and the opponent electrode. Sample absorbancy test using UV-Visible LAMBDA 25 spectrophotometer and test current and voltage characterization (I-V) using Keithley 2602A. The TiO2 deposition method uses the drop and soaks method. The results of the study showed that the maximum absorbancy in the high dye ruthenium appeared at the two peaks at = 448 nm and = 580 nm. While I-V curve measurements showed great efficiency that resulted in ruthenium dye with concentrations of 0.1, 0.5, and 1 in a row were 0, 12%, 0.186%, and 0.26%. These results show that higher concentrations of ruthenium dye can increase the value of the resulting efficiency.

Abstrak: Penelitian ini bertujuan untuk mengkarakterisasi Ruthenium sebagai fotosensitizer pada Dye-Sensitized Solar Cells (DSSC). Sampel dibuat dalam struktur kerja pasangan elektroda Sandwich dan elektroda lawan. Uji absorbansi sampel menggunakan spektrofotometer UV-Visible LAMBDA 25 dan uji karakterisasi arus dan tegangan (I-V) menggunakan Keithley 2602A. Metode pengendapan TiO2 menggunakan metode drop and soaks. Hasil penelitian menunjukkan bahwa absorbansi maksimum pada zat warna rutenium tinggi muncul pada dua puncak yaitu = 448 nm dan = 580 nm. Sedangkan pengukuran kurva I-V menunjukkan efisiensi yang sangat baik yang menghasilkan pewarna rutenium dengan konsentrasi 0,1, 0,5, dan 1 berturut-turut adalah 0, 12%, 0,186%, dan 0,26%. Hasil tersebut menunjukkan bahwa semakin tinggi konsentrasi zat warna rutenium dapat meningkatkan nilai efisiensi yang dihasilkan.


Dye-Sensitized Solar Cells (DSSC). Ruthenium, Sensitizer, TiO2, Efisiensi

Full Text:



Bayod-Rújula, A. A. (2019). Solar photovoltaics (PV). Solar Hydrogen Production: Processes, Systems and Technologies, 1(4), 237–295.

Cari, Supriyanto, A., Fadli, U. M., & Prasada, A. B. (2016). Fabrication and Characterization of Sansevieria trifasciata, Pandanus amaryllifolius and Cassia angustifolia as Photosensitizer for Dye Sensitized Solar Cells. Journal of Physics: Conference Series, 710(1).

Chae, J., Kim, D. Y., Kim, S., & Kang, M. (2010). Photovoltaic efficiency on dye-sensitized solar cells (DSSC) assembled using Ga-incorporated TiO2 materials. Journal of Industrial and Engineering Chemistry, 16(6), 906–911.

Chang, H., Chen, C. H., Kao, M. J., Chien, S. H., & Chou, C. Y. (2013). Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC. Applied Surface Science, 275, 252–257.

Chen, J., Bai, F. Q., Wang, J., Hao, L., Xie, Z. F., Pan, Q. J., & Zhang, H. X. (2012). Theoretical studies on spectroscopic properties of ruthenium sensitizers absorbed to TiO 2 film surface with connection mode for DSSC. Dyes and Pigments, 94(3), 459–468.

Cho, K. Y., Lee, S., Lee, Y.-G., Jun, Y., & Park, J.-K. (2010). Enhancement of Dye-sensitized solar cell (DSSC) performance using polymeric spectacular reflectance film. PMSE Prepr., (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), No pp. given. Retrieved from

Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145–153.

Hardani, Cari, & Supriyanto, A. (2018). Efficiency of dye-sensitized solar cell (DSSC) improvement as a light party TiO2-nano particle with extract pigment mangosteen peel (Garcinia mangostana). 020002.

Hardani, H., Darmaja, H., Darmawan, M. I., Cari, C., & Supriyanto, A. (2016). Pengaruh Perubahan Intensitas Cahaya Halogen Ruthenium (N719) Fotosensitizer Dalam Dye-Sensitized Solar Cell(Dssc). Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 6(2), 70.

Ho Soon Min, Hardani, Cari, A. S. (2020). Thin Film-Based Solar Cell and Dye-Sensitized Solar Cells : Review. 29(11), 2413–2426. Retrieved from

Joshi, P. H., Korfiatis, D. P., Potamianou, S. F., & Thoma, K.-A. T. (2013). Selected parameters leading to an optimized DSSC performance. Russian Journal of Electrochemistry, 49(7), 628–632.

Khatibi, A., Razi Astaraei, F., & Ahmadi, M. H. (2019). Generation and combination of the solar cells: A current model review. Energy Science and Engineering, 7(2), 305–322.

Kitai, A. (2011). Principles of Solar Cells , LEDs and Diodes e role of the PN junction. Retrieved from

Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13.

Valente, Garcia Poortmans, J., & Arkhipov, V. (2014). Thin Film Solar Cells Fabrication , Characterization and Applications.

Wang, M., Wang, Y., & Li, J. (2011). ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC. Chemical Communications (Cambridge, England), 47(40), 11246–11248.

Yoneda, E., Nazeeruddin, M. K., & Craetzel, M. (2012). Cyclometalated Ruthenium Dyes for DSSC. Journal of Photopolymer Science and Technology, 25(2), 175–181.


  • There are currently no refbacks.