Potensi Tepung Keong Terfermentasi sebagai Subtitusi Pakan Ternak dalam Meningkatkan Produksi dan Kualitas Telur Unggas

Ardiana Ayu Anjarwati

Abstract

Poultry is a livestock commodity that is in great demand by many people. However, poultry egg production often declines and does not provide maximum results for farmers due to molting, and several other environmental factors. The use of high protein ingredients is known to increase the length of the reproductive tract of poultry, which is associated with an increased amount of egg production. Snail meat which contains a lot of protein can be used as animal feed. Based on this description, it can be predicted that snail meat can be used toimprove the decline in poultry egg production due to environmental influence. The performance of the snail meat content is improved by fermentation technology with lactic acid bacteria that are naturally found in aquatic animals.

Keywords

conch flour, fermentation, egg production, egg quality

Full Text:

PDF

References

H. T. Murdiono et al., “Performans Ayam Ketarras Pada Umur 12 Minggu Sampai Dewasa Kelamin Berdasarkan Pola Warna Bulu,” vol. 1, no. 2, pp. 182–190, 2019.

W. Hilkias, E. Suprijatna, Y. S. Ondho, G. W. Revwuxfw, and W. K. H. Jurzwk, “Pengaruh penggunaan tepung limbah udang fermentasi terhadap karakteristik organ reproduksi pada puyuh petelur ( Coturnix coturnix japonica ),” Ilmu-Ilmu Peternak., vol. 27, no. 2, pp. 8–18, 2017.

R. Hartati, D. Wijayanti, and Haryoko, “Pengaruh Force Molting terhadap Produksi Telur Tetas dan Fertilitas Induk Ayam Broiler,” Bull. Appl. Anim. Res., vol. 1, no. 1, pp. 22–25, 2019.

D. S. Prayitno, Tingkah laku unggas. 2015.

D. U. Fahrodi, V. Mustofa, and N. S. Said, “EFEK INJEKSI ANTI PROLAKTIN TERHADAP LAMA FASE MOLTING ITIK MOJOSARI (Anas platyrhynchos javanicus),” J. SAINTEK Peternak. dan Perikan., vol. 1, no. 1, pp. 15–20, 2017.

M. Brantsæter et al., “Rearing laying hens in aviaries reduces fearfulness following transfer to furnished cages,” Front. Vet. Sci., vol. 3, no. FEB, 2016, doi: 10.3389/fvets.2016.00013.

M. Brantsæter, J. Nordgreen, T. B. Rodenburg, F. M. Tahamtani, A. Popova, and A. M. Janczak, “Exposure to increased environmental complexity during rearing reduces fearfulness and increases use of three-dimensional space in laying hens (Gallus gallus domesticus),” Front. Vet. Sci., vol. 3, no. FEB, pp. 1–10, 2016, doi: 10.3389/fvets.2016.00014.

M. Brantsæter et al., “Access to litter during rearing and environmental enrichment during production reduce fearfulness in adult laying hens,” Appl. Anim. Behav. Sci., vol. 189, pp. 49–56, 2017, doi: 10.1016/j.applanim.2017.01.008.

F. M. Tahamtani et al., “Effects of litter provision during early rearing and environmental enrichment during the production phase on feather pecking and feather damage in laying hens,” Poult. Sci., vol. 95, no. 12, pp. 2747–2756, 2016, doi: 10.3382/ps/pew265.

L. M. Stadig et al., “Opinion of Belgian egg farmers on hen welfare and its relationship with housing type,” Animals, vol. 6, no. 1, pp. 1–11, 2015, doi: 10.3390/ani6010001.

M. Brantsæter et al., “Problem behaviors in adult laying hens – identifying risk factors during rearing and egg production,” Poult. Sci., vol. 97, no. 1, pp. 2–16, 2018, doi: 10.3382/ps/pex276.

M. Prodanov, M. Radeski, and V. Ilieski, “AIR QUALITY MEASUREMENTS IN LAYING HENS HOUSING,” Maced. Vet. Rev., vol. 39, no. 1, pp. 91–95, 2018.

S. Pu, K. Usuda, K. Nagaoka, A. Gore, D. Crews, and G. Watanabe, “The relation between liver damage and reproduction in female Japanese quail (Coturnix japonica ) exposed to high ambient temperature,” Poult. Sci., vol. 99, no. 9, pp. 4586–4597, 2020, doi: 10.1016/j.psj.2020.05.025.

Y. Fenita, U. Santoso, and A. Kusnandar, “Pengaruh Pemberian Tumbuhan Obat terhadap Performa Produksi dan Karakteristik Reproduksi Ayam Petelur,” Agripet, vol. 20, no. April, pp. 38–46, 2020.

S. Besiktepe and H. G. Dam, “Progress in Oceanography Effect of diet on the coupling of ingestion and egg production in the ubiquitous copepod , Acartia tonsa,” Prog. Oceanogr., vol. 186, no. April 2019, p. 102346, 2020, doi: 10.1016/j.pocean.2020.102346.

M. K. Sharma, T. Dinh, and P. A. Adhikari, “Production performance , egg quality , and small intestine histomorphology of the laying hens supplemented with phytogenic feed additive,” J. Appl. Poult. Res., vol. 29, no. 2, pp. 362–371, 2020, doi: 10.1016/j.japr.2019.12.001.

J. Zhang, K. Cai, R. Mishra, and R. Jha, “In ovo supplementation of chitooligosaccharide and chlorella polysaccharide affects cecal microbial community , metabolic pathways , and fermentation metabolites in broiler chickens,” Poult. Sci., vol. 99, no. 10, pp. 4776–4785, 2019, doi: 10.1016/j.psj.2020.06.061.

Y. Jiao, R. Jha, W. L. Zhang, and I. H. Kim, “Effects of chitooligosaccharide supplementation on egg production , egg quality and blood profiles in laying hens Effects of chitooligosaccharide supplementation on egg production , egg quality and blood profiles in laying hens,” no. October, 2019, doi: 10.18805/ijar.B-881.

J. R. Wilburn and E. P. Ryan, Fermented Foods in Health Promotion and Disease Prevention: An Overview.

Elsevier Inc., 2017.

D. Ansorena and I. Astiasaran, Fermented foods: Composition and health effects encyclopedia of food and health. Oxford Academi Press, 2016.

E.-K. Kim, A.-W. Ha, E.-O. Choi, and S.-Y. Ju, “Analysis of Kimchi, vegetable and fruit consumption trends among Korean adults: data from the Korea National Health and Nutrition Examination Survey,” Nutr. Res. Pract., vol. 10, no. 2, pp. 188–97, 2016, doi: doi:10.4162/nrp.2016.10.2.188.

N. S. Terefe, Food fermentation reference module in food science. Elsevier, 2016.

J. Hwang, J. chul Kim, H. Moon, J. yeon Yang, and M. K. Kim, “Determination of sodium contents in traditional fermented foods in Korea,” J. Food Compos. Anal., vol. 56, pp. 110–114, 2017, doi: 10.1016/j.jfca.2016.11.013.

M. L. Marco et al., “Health benefits of fermented foods: microbiota and beyond,” Curr. Opin. Biotechnol., vol. 44, pp. 94–102, 2017, doi: 10.1016/j.copbio.2016.11.010.

Martinez-Villaluenga, E. Peñas, and J. Frias, Bioactive Peptides in Fermented Foods : Production and Evidence for Health Effects. Elsevier Inc., 2017.

S. S. Behera, A. Farag, and E. Sheikha, “Traditionally fermented pickles : How the microbial diversity associated with their nutritional and health bene fi ts ?,” J. Funct. Foods, vol. 70, no. April, p. 103971, 2020, doi: 10.1016/j.jff.2020.103971.

D. Kavitake, S. Kandasamy, and P. Bruntha, “Food Bioscience Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review,” Food Biosci., vol. 21, no. November 2017, pp. 34–44, 2018, doi: 10.1016/j.fbio.2017.11.003.

E. Abdolalipour et al., “Microbial Pathogenesis Evaluation of the antitumor immune responses of probiotic Bifidobacterium bi fi dum in human papillomavirus-induced tumor model,” Microb. Pthogenes., vol. 145, no. March, p. 104207, 2020, doi: 10.1016/j.micpath.2020.104207.

M. Nougalli, I. Kimiko, M. Angela, T. Adorno, and J. M. M, “Effect of fermented sausages with probiotic Enterococcus faecium CRL 183 on gut microbiota using dynamic colonic model,” LWT - Food Sci. Technol., vol. 132, no. July, 2020, doi: 10.1016/j.lwt.2020.109876.

A. K. Mishra and A. R. Ghosh, “Probiotic Enterococcus faecalis AG5 mitigated high fat diet induced obesity and produced propionic acid stimulated apoptosis in 3T3-L1 pre-adipocyte,” Life Sci., vol. 261, no. August, p. 118292, 2020, doi: 10.1016/j.lfs.2020.118292.

M. Lucila, E. E. Tymczyszyn, M. D. L. Angeles, and P. Carasi, “Freeze-drying of Enterococcus durans : Effect on their probiotics and biopreservative properties,” LWT - Food Sci. Technol., no. August, 2020, doi: 10.1016/j.lwt.2020.110496.

S. Lim, N. Lee, K. Kim, and H. Paik, “Probiotic Lactobacillus fermentum KU200060 isolated from watery kimchi and its application in probiotic yogurt for oral health,” Microb. Pathog., vol. 147, no. August, p. 104430, 2020, doi: 10.1016/j.micpath.2020.104430.

X. Zhang et al., “Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens,” Saudi J. Biol. Sci., no. xxxx, 2020, doi: 10.1016/j.sjbs.2020.10.022.

M. Kwon, M. Shin, S. Ki, J. Lee, and H. Kyeong, “Leuconostoc citreum isolated from kimchi suppresses the development of collagen-induced arthritis in DBA / 1 mice,” J. Funct. Foods, vol. 63, no. September, p. 103579, 2019, doi: 10.1016/j.jff.2019.103579.

F. Namai, S. Shigemori, T. Ogita, T. Sato, and T. Shimosato, “Construction of genetically modified Lactococcus lactis that produces bioactive anti - interleukin - 4 single - chain fragment variable,” Mol. Biol. Rep., no. 0123456789, 2020, doi: 10.1007/s11033-020-05765-0.

F. Namai, S. Shigemori, T. Ogita, T. Sato, and T. Shimosato, “Microbial therapeutics for acute colitis based on genetically modi fi ed Lactococcus lactis hypersecreting IL-1Ra in mice,” Exp. Mol. Med., pp. 1627–1636, 2020, doi: 10.1038/s12276-020-00507-5.

N. Y. Lee et al., “Lactobacillus and Pediococcus ameliorate progression of non-alcoholic fatty liver disease through modulation of the gut microbiome,” Gut Microbes, vol. 00, no. 00, pp. 1–18, 2020, doi: 10.1080/19490976.2020.1712984.

L. Zhang, L. Zhang, and Y. Xu, “Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation,” SCI, no. February, 2020, doi: 10.1002/jsfa.10310.

S. Metin and Z. Işıl, “Antibacterial activity of some essential oils againts Vagococcus salmoninarum,” Ege J. Fish. Aquat. Sci., vol. 37, no. 2, pp. 167–173, 2020, doi: 10.12714/egejfas.37.2.07.

S. Y. Mun and H. C. Chang, “Characterization of Weissella koreensis SK Isolated from Kimchi Fermented at Low Temperature ( around 0 ◦ C ) Based on Complete Genome Sequence and Corresponding Phenotype,” 2020.

X. Rui et al., “A comparison study of bioaccessibility of soy protein gel induced by magnesiumchloride, glucono-δ-lactone and microbial transglutaminase,” LWT - Food Sci. Technol., vol. 71, pp. 234–242, 2016, doi: 10.1016/j.lwt.2016.03.032.

T. Oliveira, E. Ramalhosa, L. Nunes, J. A. Pereira, E. Colla, and E. L. Pereira, “Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal,” Innov. Food Sci. Emerg. Technol., vol. 44, no. June, pp. 167–172, 2017, doi: 10.1016/j.ifset.2017.06.003.

T. Santos et al., “Characterization of lactobacilli strains derived from cocoa fermentation in the south of Bahia for the development of probiotic cultures,” LWT - Food Sci. Technol., vol. 73, pp. 259–266, 2016, doi: 10.1016/j.lwt.2016.06.003.

F. Cuffia, G. George, L. Godoy, G. Vinderola, J. Reinheimer, and P. Burns, “In vivo study of the immunomodulatory capacity and the impact of probiotic strains on physicochemical and sensory characteristics: Case of pasta filata soft cheeses,” Food Res. Int., vol. 125, no. July, p. 108606, 2019, doi: 10.1016/j.foodres.2019.108606.

H. Liang et al., “Bacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China,” Food Res. Int., vol. 137, no. 1, p. 109384, 2020, doi: 10.1016/j.foodres.2020.109384.

M. Mushtaq, A. Gani, and F. A. Masoodi, “Himalayan cheese (Kalari/Kradi) fermented with different probiotic strains: In vitro investigation of nutraceutical properties,” LWT - Food Sci. Technol., vol. 104, no. November 2018, pp. 53–60, 2019, doi: 10.1016/j.lwt.2019.01.024.

N. Şanlier, B. B. Gökcen, and A. C. Sezgin, “Health benefits of fermented foods,” Crit. Rev. Food Sci. Nutr., vol. 12, no. 3, pp. 1549–7852, 2019, doi: https://doi.org/10.1080/10408398.2017.1383355.

J. Jitpakdee, D. Kantachote, H. Kanzaki, and T. Nitoda, “Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production : Lower cholesterol with more beneficial compounds,” LWT, vol. 135, no. August 2020, p. 110061, 2021, doi: 10.1016/j.lwt.2020.110061.

A. Xia, X. Meng, X. Tang, Y. Zhang, and S. Lei, “Probiotic and related properties of a novel lactic acid bacteria strain isolated from fermented rose jam,” LWT, vol. 136, no. P2, p. 110327, 2021, doi: 10.1016/j.lwt.2020.110327.

C. García, M. Rendueles, and M. Díaz, “Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria : A review,” Food Res. Int., vol. 119, no. January, pp. 207–220, 2019, doi: 10.1016/j.foodres.2019.01.043.

M. García-burgos, J. Moreno-fernández, M. J. M. Alférez, J. Díaz-castro, and I. López-aliaga, “New perspectives in fermented dairy products and their health relevance,” J. Funct. Foods, vol. 72, no. May, p. 104059, 2020, doi: 10.1016/j.jff.2020.104059.

L. Tian et al., “Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk,” Food Chem., p. 128163, 2020, doi: 10.1016/j.foodchem.2020.128163.

S. Ghosh, C. Jung, and V. B. Meyer-rochow, “Snail as mini-livestock : Nutritional potential of farmed Pomacea canaliculata ( Ampullariidae ),” Agric. Nat. Resour., vol. 51, no. 6, pp. 504–511, 2018, doi: 10.1016/j.anres.2017.12.007.

C. R. Rondonuwu, J. L. P. Saerang, W. Utiah, and M. N. R. Fakultas, “PENGARUH PEMBERIAN TEPUNG KEONG SAWAH (Pila ampulacea) SEBAGAI PENGANTI TEPUNG IKAN DALAM PAKAN TERHADAP KUALITAS TELUR BURUNG PUYUH (Coturnix coturnix Japonica),” Zootek, vol. 38, no. 1, pp. 1–8, 2018.

T. Taufiq, F. Firdus, and I. Imelda Arisa, “Pertumbuhan Benih Ikan Bawal Air Tawar (Colossoma macropomum) Pada Pemberian Pakan ALami Yang Berbeda,” Ilm. Mhs. Kelaut. dan Perikan. Unsyiah, vol. 1, no. 3, pp. 355–365, 2016.

D. N. A. Paramartha, Y. Sulastri, R. Widyasari, and Zainuri, “FORMULASI DAGING KEONG SAWAH DAN TEPUNG PORANG TERHADAP MUTU FISIK DAN SENSORIS BAKSO,” J. Ilmu dan Teknol. Pangan, vol. 5, no. 2, pp. 549–559, 2019.

J. Adri, B. Rahim, F. Teknik, U. N. Padang, C. Telur, and K. Sawah, “INOVASI MESIN PENGOLAHAN PAKAN DENGAN KONSENTRAT,” Sains dan Teknol., vol. 19, no. 1, 2019.

Rosmawati, Mulyana, and M. A. Rafib, “PERTUMBUHAN DAN KELANGSUNGAN HIDUP BENIH LOBSTER AIR TAWAR (Cherax quadricarinatus) YANG DIBERI PAKAN BUATAN BERBAHAN BAKU TEPUNG KEONG MAS (Pomacea sp.),” Mina Sains, vol. 5, no. 1, 2019.

Q. Yang, Z. Qian, Z. Ye, A. Zhou, and X. Zhao, “Widespread mislabeling of nonnative apple snails ( Ampullariidae : Pomacea ) as native fi eld snails ( Viviparidae : Cipangopaludina ) on the Chinese food markets,” Aquaculture, vol. 530, no. April 2020, 2021, doi: 10.1016/j.aquaculture.2020.735756.

M. Daud, Y. MA, H. Latif, and Asril, “Penggunaan Tepung Keong Mas dan Suplementasi Probiotik dalam Ransum terhadap Performa Itik Peking,” Pros. Semin. Nas. Teknol. Peternak. dan Vet., pp. 407–414, 2017, [Online]. Available: doi: http://dx.doi.org/10.14334/Pros.Semnas.TPV-2017-p.407-414%0APenggunaan.

V. B. Meyer-rochow and N. Hachijojima, Snails ( Terrestrial and Freshwater ) as Human Food. Elsevier, 2018.

L. Ode, M. Harisud, E. Bidayani, and F. Syarif, “PERFORMA PERTUMBUHAN DAN KELANGSUNGAN HIDUP KEPITING BAKAU ( Scylla sp .) DENGAN PEMBERIAN KOMBINASI PAKAN KEONG MAS DAN IKAN RUCAH GROWTH PERFOMANCE AND SURVIVAL OF MUD CRAB ( Scylla sp . ) FEEDING WITH COMBINATION OF GOLDEN SNAIL AND TRASH FISHES,” J. Trop. Mar. Sci., vol. 2, no. 2, pp. 43–50, 2019.

F. The, M. E. R. M. Ch. L. K. Sarajar, and M. Najoan, “PERFORMANS BURUNG PUYUH ( Coturnix – coturnix japonica ) YANG DIBERIKAN TEPUNG KEONG SAWAH ( Pila ampullacea ) SEBAGAI PENGGANTI TEPUNG IKAN DALAM RANSUM Fransela The , Ch . L . K . Sarajar , M . E . R . Montong *, M . Najoan PENDAHULUAN Burung puyuh ( co,” Zootek, vol. 37, no. 1, pp. 62–69, 2017.

N. E. Permatasari and A. C. Adi, “DAYA TERIMA DAN KANDUNGAN GIZI (ENERGI, PROTEIN) GYOZA YANG DISUBSTITUSI KEONG SAWAH ( Pila ampullacea ) DAN,” Media Gizi Indones., vol. 13, no. 1, pp. 62–70, 2018, doi: 10.20473/mgi.v13i1.62.

D. M. Suci, R. Mareta, N. Y. Hidayatulloh, and W. Hermana, “Suplementasi Keong Mas ( Pomacea canaliculata Lamarck ) dalam Ransum Berbasis Limbah Restoran dan Ampas Kelapa terhadap Performa Itik Hibrida,” J. Ilmu Nutr. dan Teknol. Pakan, vol. 17, no. 1, pp. 16–20, 2019.

Syamsir, K. D. Maani, and Jumiati, “PEMBERDAYAAN SDM KELOMPOK TANI DALAM PENGOLAHAN KEONG MAS MENJADI PAKAN TERNAK Syamsir,” J. Educ. Soc. Sci., vol. 3, no. 2, pp. 178–189, 2019.

R. Y. Putra, S. E. Wallah, and R. Pandaleke, “PENGARUH PEMANFAATAN CANGKANG KEONG SAWAH SEBAGAI SUBSTITUSI AGREGAT HALUS ( PASIR ) DITINJAU,” J. Sipil Statik, vol. 7, no. 11, pp. 1477–1484, 2019.

N. I. Windayani, T. Surti, and I. Wijayanti, “PENGARUH LAMA FERMENTASI TERHADAP KUALITAS KECAP KEONG SAWAH (Pila ampullacea),” Peng. Biotek. Has. Pi., vol. 5, no. 2, pp. 21–27, 2016.

Refbacks

  • There are currently no refbacks.