Pengaruh Penerapan Media Pembelajaran Augmented Reality ECO-AR 1-3 Terhadap Peningkatan Dimensi Ecological Knowledge dalam Kosep Literasi Lingkungan

Dessy Feranita1, Puguh Karyanto1, Dwi Oetomo1, Tutut Sumarjiyana2

Abstract

Penelitian ini bertujuan untuk mengetahui pengaruh penerapan media pembelajaran Augmented Reality ECO-AR 1-3 terhadap peningkatan dimensi ecological knowledge dalam konsep literasi lingkungan. Penelitian ini termasuk dalam penelitian ex post facto dengan pendekatan kuantitatif. Desain penelitian menggunakan post only group design, Pengambilan sampel penelitian menggunakan teknikcluster sampling. Sampel kelas X MIPA sebanyak 32 siswa dan kelas XI MIPA sebanyak 31 siswa. Pembelajaran dilaksanakan pada kelas X MIPA dengan menggunakan media pembelajaran Augmented Reality ECO-AR 1-3.Teknik pengumpulan data menggunakan tes, angket, observasi, dan dokumentasi. Uji prasyarat hipotesis menggunakan uji normalitas dan homogenitas. Uji hipotesis yang digunakan adalah uji t dengan taraf signifikansi 5%. Hasil penelitian menunjukkan adanya perbedaan yang signifikan pada capaian dimensi ecological knowledge dalam konsep literasi lingkungan pada kelas yang menggunakan media pembelajaran Augmented Reality ECO-AR 1-3 dengan kelas yang menggunakan media pembelajaran konvensional. Hasil analisis statistik menunjukkan capaian dimensi ecological knowledge dalam konsep literasi lingkungan pada kelas yang menggunakan media pembelajaran Augmented Reality ECO-AR 1-3 memiliki rata-rata lebih tinggi dibanding kelas yang menggunakan media pembelajaran konvensional.

Keywords

Augmented Reality ECO-AR 1-3, ecological knowledge, literasi lingkungan

Full Text:

PDF

References

Ajzen, I. (1991). The theory of planned behavior. Orgnizational Behavior and Human Decision Processes, 50, 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Akçayir, M., Akçayir, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334–342. https://doi.org/10.1016/j.chb.2015.12.054

Arnon, S., Orion, N., & Carmi, N. (2015). Environmental literacy components and their promotion by institutions of higher education: an Israeli case study. Environmental Education Research, 21(7), 1029–1055. https://doi.org/10.1080/13504622.2014.966656

Azar, C., Holmberg, J., & Lindgren, K. (1996). Socio-ecological indicators for sustainability. Ecologial Economics, 18(2), 89–112. https://doi.org/Doi 10.1016/0921-8009(96)00028-6

Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2014). Augmented Reality in education - cases, places and potentials. Educational Media International, 51(1), 1–15. https://doi.org/10.1080/09523987.2014.889400

Cheng, T. M., & Wu, H. C. (2014). How do environmental knowledge, environmental sensitivity, and place attachment affect environmentally responsible behavior? An integrated approach for sustainable island tourism. Journal of Sustainable Tourism, (December), 37–41. https://doi.org/10.1080/09669582.2014.965177

Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). Students’ online interactive patterns in augmented reality-based inquiry activities. Computers and Education, 78, 97–108. https://doi.org/10.1016/j.compedu.2014.05.006

Chiu, J. L., Dejaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school students’ understanding of gas properties. Computers and Education, 85, 59–73. https://doi.org/10.1016/j.compedu.2015.02.007

Cristina, I., Klein, G., & Brandão, D. M. (2017). Segmented and Detailed Visualization of Anatomical Structures based on Augmented Reality for Health Education and Knowledge Discovery. Advances in Science, Technology and Engineering Systems Journal, 2(3), 469–478. Retrieved from http://astesj.com/v02/i03/p60/

Dunlap, R. E., Van Liere, K. D., Mertig, A. G., & Jones, R. E. (2000). New Trends in Measuring Environmental Attitudes: Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. Journal of Social Issues, 56(3), 425–442. https://doi.org/10.1111/0022-4537.00176

Dunleavy, M., & Dese, C. (2014). Augmented Reality Teaching and Learning. Handbook of Research on Educational Communications and Technology: Fourth Edition, 347–248. https://doi.org/10.1007/978-1-4614-3185-5

Eh Phon, D. N., Ali, M. B., & Halim, N. D. A. (2014). Collaborative augmented reality in education: A review. Proceedings - 2014 International Conference on Teaching and Learning in Computing and Engineering, LATICE 2014, 78–83. https://doi.org/10.1109/LaTiCE.2014.23

Frache, G., Nistazakis, H. E., & Tombras, G. S. (2017). Reengineering Engineering Education: Developing a Constructively aligned Learning-by-Doing Pedagogical Model for 21st Century Education. IEEE Global Engineering Education Conference (EDUCON), 1119–1124.

Hollweg, K. ., Taylor, J. ., Bybee, R. ., Marckinkowski, T. ., McBeth, W. ., & Zoido, P. (2011). Developing a Framework for Assessing Environmental Literacy. Washington, DC: North American Association for Environmental Education. Retrieved from http://www.naaee.net

Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers and Education, 96, 72–82. https://doi.org/10.1016/j.compedu.2016.02.008

Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895–1906. https://doi.org/10.1080/10494820.2015.1057747

Ibáñez, M. B., Di Serio, Á., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers and Education, 71, 1–13. https://doi.org/10.1016/j.compedu.2013.09.004

Ibanez, M. B., Serio, A. Di, Villaran, D., & Delgado-Kloos, C. (2016). The Acceptance of Learning Augmented Reality Environments: A Case Study. 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT), 307–311. https://doi.org/10.1109/ICALT.2016.124

KLHK. (2015). Indeks kualitas lingkungan hidup 2014 (Tujuh). Jakarta: Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia.

Koedinger, K. R., Kim, J., Jia, J. Z., McLaughlin, E. A., & Bier, N. L. (2015). Learning is not a spectator sport: doing is better than watching for learning from a MOOC. Proceedings of the Second (2015) ACM Conference on Learning @ Scale - L@S ’15, 111–120. https://doi.org/10.1145/2724660.2724681

Küçük, S., Kapakin, S., & Göktaş, Y. (2016). Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anatomical Sciences Education, 9(5), 411–421. https://doi.org/10.1002/ase.1603

Levine, D. S., & Strube, M. J. (2012). Environmental Attitudes, Knowledge, Intentions and Behaviors Among College Students. The Journal of Social Psychology, 152(3), 308–326. https://doi.org/10.1080/00224545.2011.604363

Lewinsohn, T. M., Attayde, J. L., Fonseca, C. R., Ganade, G., Jorge, L. R., Kollmann, J., … Weisser, W. W. (2014). Ecological literacy and beyond: Problem-based learning for future professionals. Ambio, 44(2), 154–162. https://doi.org/10.1007/s13280-014-0539-2

Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525–541. https://doi.org/10.1080/13504622.2014.911247

Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M. D., & Mora, C. E. (2015). Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior, 51, 752–761. https://doi.org/10.1016/j.chb.2014.11.093

Radu, I. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533–1543. https://doi.org/10.1007/s00779-013-0747-y

Saidin, N. F., Halim, N. D. A., & Yahaya, N. (2015). A review of research on augmented reality in education: Advantages and applications. International Education Studies, 8(13), 1–8. https://doi.org/10.5539/ies.v8n13p1

Smørdal, O., Liestøl, G., & Erstad, O. (2016). Exploring situated knowledge building using mobile augmented reality. Qwerty - Open and Interdisciplinary Journal of Technology, Culture and Education, 1(1), 26–43.

Sommerauer, P., & Müller, O. (2014). Augmented reality in informal learning environments: A field experiment in a mathematics exhibition. Computers and Education, 79(2014), 59–68. https://doi.org/10.1016/j.compedu.2014.07.013

Spinola, H. (2015). Environmental literacy comparison between students taught in Eco-schools and ordinary schools in the Madeira Island region of Portugal. Science Education International, 26(3), 392–413.

Tarng, W., Ou, K.-L., Yu, C.-S., Liou, F.-L., & Liou, H.-H. (2015). Development of a virtual butterfly ecological system based on augmented reality and mobile learning technologies. Virtual Reality, 19(3–4), 253–266. https://doi.org/10.1007/s10055-015-0265-5

Velazquez, L., Munguia, N., & Sanchez, M. (2005). Deterring sustainability in higher education institutions. International Journal of Sustainability in Higher Education, 6(4), 383–391. https://doi.org/10.1108/14676370510623865

Waikato Regional Council Technical Report. (2013). New Ecological Paradigm Survey 2008 : Analysis of the NEP results, 4355, 1–76.

Yen, J.-C., Tsai, C.-H., & Wu, M. (2013). Augmented Reality in the Higher Education: Students’ Science Concept Learning and Academic Achievement in Astronomy. Procedia - Social and Behavioral Sciences, 103, 165–173. https://doi.org/10.1016/j.sbspro.2013.10.322

Refbacks

  • There are currently no refbacks.