Sintesis Elektroda Baterai Litium-Ion Berbasis Spent Nickel Catalyst Berkapasitas Tinggi

Dewi Pratiwi, Hafid Khusyaeri, Haris Ade Kurniawan, Agus Purwanto

Abstract

Baterai telah dipertimbangkan sebagai media penyimpan energi listrik untuk perangkat elektronik pengganti energi fosil. Baterai litium ion mempunyai keunggulan berupa densitas energi yang tinggi, ringan, dan rendah polusi. Salah satu katoda terbaik bagi baterai ini adalah NCA karena memiliki densitas energi spesifik dan densitas daya spesifik yang tinggi serta umur yang lebih lama dibandingkan dengan LiCoO2. Keterbatasan nikel sebagai salah satu material NCA mendorong untuk berinovasi lebih lanjut, salah satunya adalah pemanfaatan kandungan nikel pada spent nickel catalyst. Penggambilan logam nikel pada spent nickel catalyst ini menggunakan metode leaching. Metode ini dipilih karena memiliki proses yang sederhana, dapat dilakukan dalam skala besar, dan ekonomis dari segi biaya. Mengingat spent nickel catalyst merupakan limbah B3, proses recovery nikel ini dianggap inovasi solutif untuk mengurangi dampak negatif dari limbah ini sehingga memunculkan konsep zero waste serta mengatasi permasalahan dalam keterbatasan logam nikel di Indonesia. Berikut merupakan ulasan dari hasil studi literasi.

Full Text:

PDF

References

H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium ion batteries,” J. Energy Chem., vol. 57, pp. 451–468, 2020.

J. Li, B. R. Chen, and H. M. Zhou, “Effects of washing and heat-treatment on structure and electrochemical charge/discharge property of LiNi0.8Co0.15Al0.05O2 powder,” Wuji Cailiao Xuebao/Journal Inorg. Mater., vol. 31, no. 7, pp. 773–778, 2016.

E. H. Sujiono and M. Diantoro, “Karakteristik Sifat Fisis Batuan Nikel Di Sorowako Sulawesi Selatan,” J. Pendidik. Fis. Indones., vol. 10, no. 2, pp. 163–167, 2014.

ESDM, “Biji Nikel Tidak Boleh Diekspor Lagi per Januari 2020,” Nomor: 549.Pers/04/SJI/2019, 2019. https://www.esdm.go.id/id/media-center/arsip-berita/bijih-nikel-tidak-boleh-diekspor-lagi-per-januari-2020 (accessed Nov. 06, 2020).

Yuliusman, “RECOVERY LOGAM NIKEL DARI SPENT KATALIS NiO/Al2O3 DENGAN TEKNOLOGI LEACHING MENGGUNAKAN AMONIA-AMONIUM KARBONAT,” J. MIPA, vol. 39, no. 2, pp. 143–149, 2017.

Oza R and Patel S, “Recovery of Nickel from Spent Ni/Al 2 O 3 Catalysts using Acid Leaching, Chelation and Ultrasonication,” Res. J. Recent Sci. Res.J.Recent.Sci, vol. 1, pp. 434–443, 2011.

A. L. Wagner, R. S. Osborne, and J. P. Wagner, “Prediction of Deactivation Rates and Mechanisms of Reforming Catalysts,” ACS Div. Fuel Chem. Prepr., vol. 48, no. 2, pp. 748–749, 2003.

Q. Z. Yang, G. J. Qi, H. C. Low, and B. Song, “Sustainable recovery of nickel from spent hydrogenation catalyst: Economics, emissions and wastes assessment,” J. Clean. Prod., vol. 19, no. 4, pp. 365–375, 2011.

A. Purwanto, C. S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, and H. Haerudin, “NCA cathode material: Synthesis methods and performance enhancement efforts,” Mater. Res. Express, vol. 5, no. 12, 2018.

D. Lin, Y. Liu, and Y. Cui, “Reviving the lithium metal anode for high-energy batteries,” Nat. Nanotechnol., vol. 12, no. 3, pp. 194–206, 2017.

K. D. R. Ekawati, A. P. Sholikah, C. S. Yudha, H. Widiyandari, and A. Purwanto, “Comparative Study of NCA Cathode Material Synthesis Methods towards Their Structure Characteristics,” Proceeding - 2018 5th Int. Conf. Electr. Veh. Technol. ICEVT 2018, pp. 57–61, 2019.

S. K. Martha et al., “On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries,” J. Electrochem. Soc., vol. 158, no. 10, p. A1115, 2011.

E. A. Abdel-Aal and M. M. Rashad, “Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid,” Hydrometallurgy, vol. 74, no. 3–4, pp. 189–194, 2004.

N. M. Al-Mansi and N. M. Abdel Monem, “Recovery of nickel oxide from spent catalyst,” Waste Manag., vol. 22, no. 1, pp. 85–90, 2002.

R. Ivascanu S.T., “Nickel recovery from spent catalysts: I. Solvation process,” Bul. Inst. Politeh. Iasi, Sect. II, vol. 2, p. 47, 1975.

A. J. Chaudhary, J. D. Donaldson, S. C. Boddington, and S. M. Grimes, “Heavy metals in the environment. Part II: a hydrochloric acid leaching process for the recovery of nickel value from a spent catalyst,” Hydrometallurgy, vol. 34, no. 2, pp. 137–150, 1993.

S. L. Tsai and M. S. Tsai, “A study of the extraction of vanadium and nickel in oil-fired fly ash,” Resour. Conserv. Recycl., vol. 22, no. 3–4, pp. 163–176, 1998.

S. Xia, Y. Zhang, P. Dong, and Y. Zhang, “Synthesis cathode material LiNi0.80Co0.15Al 0.05O2 with two step solid-state method under air stream,” EPJ Appl. Phys., vol. 65, no. 1, pp. 1–6, 2014.

H. Xie, G. Hu, K. Du, Z. Peng, and Y. Cao, “An improved continuous co-precipitation method to synthesize LiNi0.80Co0.15Al0.05O2 cathode material,” J. Alloys Compd., vol. 666, pp. 84–87, 2016.

A. M. G. Qilla Aulia Suri, “Fakultas Teknik – Universitas Muria Kudus,” Pros. SNATIF ke-6 Tahun 2019, no. 2007, pp. 96–101, 2019.

C. J. Han, J. H. Yoon, W. Il Cho, and H. Jang, “Electrochemical properties of LiNi0.8Co0.2-xAl xO2 prepared by a sol-gel method,” J. Power Sources, vol. 136, no. 1, pp. 132–138, 2004.

W. Chen, Y. Li, D. Yang, X. Feng, X. Guan, and L. Mi, “Controlled synthesis of spherical hierarchical LiNi1 - X - yCoxAlyO2 (0

Refbacks

  • There are currently no refbacks.