Bioderadable Foam Nanofiber Selulosa Asetat dari Limbah Kertas

Alma Nur Azizah, Wahyu Nur Safitriono, Syifa Hanifah

Abstract

Peningkatan penggunaan styrofoam berdampak pada peningkatan jumlah sampah dan mengakibatkan penurunan kualitas lingkungan. Penggunaan styrofoam dapat digantikan dengan biofoam yang ramah lingkungan dan mudah terdegradasi. Selulosa berpotensi digunakan sebagai bahan dasar pembuatan biofoam karena memiliki sifat mudah terdegradasi dan fleksibilitas yang baik. Selulosa dapat diperoleh dari limbah kertas yang juga terus meningkat. Selulosa dari limbah kertas dapat diekstraksi dengan metode kimia, fisika dan biologi. Selulosa yang mudah terdegradasi dengan daya serap air yang tinggi akan menurunkan performa biofoam sehingga perlu ditambahkan PVA untuk menurunkan daya serap air. Selulosa juga perlu di asetilasi dan dibuat serat nano untuk meningkatkan sifat termal dan mekanik dari biofoam. Narrative review ini menjelaskan potensi dalam ekstraksi, sintesis dan kemampuan selulosa dari limbah kertas dengan asetilasi, pembentukan material nanofiber dan penambahan PVA sebagai pengganti dari kemasan makanan styrofoam.

Full Text:

PDF

References

Paramita, M. P. 2019. Pengaruh Variasi Waktu Dan Suhu Proses Thermopressing Pada Pengembangan Biodegradable Foam Berbasis Tapioka Dan α-Selulosa Kulit Singkong. Skripsi. Fakultas Teknik Universitas Muhammadiyah Surakarta, Surakarta.

Coniwati, P., Mu’in, R., Saputra, H.W., Ra, M.A., and Robinsyah, R. 2018. Pengaruh Konsentrasi NaOH serta Rasio Serat Daun Nanas dan Ampas Tebu pada Pembuatan Biofoam. Jurnal Teknik Kimia, 24(1): 1-7.

Etikaningrum, N., Hermanianto, J., Iriani, E. S., Syarief, R., dan Permana, A. W., 2018. Pengaruh Penambahan Berbagai Modifikasi Serat Tandan Kosong Sawit pada Sifat Fungsional Biodegradable Foam. Indonesian Journal of Agricultural Postharvest Research, 13(3): 146-155.

Hermawan, Y. A. 2009. Konversi Limbah Kertas Menjadi Etanol Menggunakan Enzim Selulase dan Selobiase Melalui Sakarifikasi dan Fermentasi Serentak. Depok: Universitas Indonesia.

Fajrin, A., Sari, L. A., Rahmawati, N., Saputra, O. A., dan Suryanti, V. 2017. Preparation and Mechanical Properties of Chitosan-graft Maleic Anhydride Reinforced with Montmorillonite. In IOP Conference Series: Materials Science and Engineering, 176(1): 012001.

Hasanin, M. S., Mostafa, A. M., Mwafy, E. A., dan Darwesh, O. M. 2018. Eco-friendly Cellulose Nanofibers via First Reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and Characterization. Environmental nanotechnology, monitoring and management, 10: 409-418

Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., ... and Fox, D. M. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 47(8): 2609-2679.

Hassan, M. L., Abou-Zeid, R. E., Fadel, S. M., El-Sakhawy, M., dan Khiari, R. 2014. Cellulose Nanocrystals and Carboxymethyl Cellulose from Olive Stones and Their Use to Improve Paper Sheets Properties. International Journal of Nanoparticles, 7(3-4): 261-277.

de Souza, A. G., Rocha, D. B., Kano, F. S., and dos Santos Rosa, D. 2019. Valorization of industrial paper waste by isolating cellulose nanostructures with different pretreatment methods. Resources, Conservation and Recycling, 143: 133-142.

Jiang, J., Carrillo-Enríquez, N. C., Oguzlu, H., Han, X., Bi, R., Saddler, J. N., ... and Jiang, F. (2020). Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydrate Polymers, 247, 116727.

Wsoo, M.A., Shahir, S., Bohari, S.P.M., Nayan, N.H.M. and Abd Razak, S.I., 2020. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydrate Research, p.107978.J.

Cheng, H.N., Dowd, M.K., Selling, G.W. and Biswas, A., 2010. Synthesis of cellulose acetate from cotton byproducts. Carbohydrate polymers, 80(2): 449-452.

Pant, B., Park, M. and Park, S.J., 2019. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 11(7), p.305.

Svagan, A. J., Samir, M. A. S. A., and Berglund, L. A. 2008. Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils. Advanced Materials, 20(7): 1263–1269.

Hsieh, W. C., Chang, C. P., and Lin, S. M. 2007. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids and Surfaces B: Biointerfaces, 57(2): 250–255.

Liu, D., Ma, Z., Wang, Z., Tian, H., and Gu, M. 2014. Biodegradable Poly(vinyl alcohol) Foams Supported by Cellulose Nanofibrils: Processing, Structure, and Properties. Langmuir, 30(31): 9544–9550.

Zhang, X., Teng, Z., and Huang, R. 2020. Biodegradable Starch/Chitosan Foam via Microwave Assisted Preparation: Morphology and Performance Properties. Polymers, 12(11): 1-17.

Kasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., and Chindaprasirt, P. 2016. Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2): 378–390.

Sanhawong, W., Banhalee, P., Boonsang, S. and Kaewpirom, S., 2017. Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam. Industrial Crops and Products, 108, pp.756-766.

Hendrawati, N., Wibowo, A. A., and Chrisnandari, R. D. 2020. Biodegradable Foam dari Pati Sagu Terasetilasi dengan Penambahan Blowing Agent NaHCO3. Jurnal Teknik Kimia dan Lingkungan, 4(2): 186-195.

Refbacks

  • There are currently no refbacks.