Optimasi Produksi Fermentable Sugar dengan Hidrolisis Enzimatis Limbah Daun Nanas (Ananas comosus [L] Merr) Sebagai Bahan Baku Biofuel Ramah Lingkungan

Sutini Sutini, Yohanita Restu Widihastuty, Muhammad Rizki Murdowo, Aida Nur Ramadhani

Abstract

Agricultural waste adalah limbah yang dihasilkan dari sektor pertanian, seperti limbah jerami, ampas tebu, dan pelepah sawit. Limbah pertanian tersebut mengandung lignoselulosa. Lignoselulosa adalah komponen yang terdiri atas selulosa, hemiselulosa, dan lignin. Adanya kandungan selulosa dapat dimanfaatkan menjadi berbagai produk, namun kandungan lignin dan hemiselulosa dapat menghambat proses hidrolisis lignoselulosa. Selulosa memiliki banyak kegunaan seperti bahan baku propelan atau bahan peledak, serta turunan dari alfa-selulosa dapat diproses menjadi produksi bioetanol, asam glutamat, biosolvent alkohol, dll. Metode hidrolisis lignoselulosa sangat mempengaruhi kadar fermentable sugar yang dihasilkan. Upaya penelitian telah dilakukan untuk meningkatkan hidrolisis lignoselulosa. Pretreatment bahan untuk menghilangkan lignin dan hemiselulosa serta optimasi enzim dan selulase meningkatkan kemampuan hidrolisis lignoselulosa. Hidrolisis simultan efektif meningkatkan hasil dan laju hidrolisis lignoselulosa. Fokus pada review paper ini adalah metode yang dapat digunakan dalam hidrolisis lignoselulosa agricultural waste sebagai optimasi produksi fermentable sugardari limbah daun nanas, diantaranya: metode pretreatment, delignifikasi, dan hidrolisis.

Full Text:

PDF

References

B. C. Saha, “Lignocellulose Biodegradation and Application in Biotechnology,” US Gov. Work. Am. Chem. Soc., vol. 2, no. 14, 2004.

E. Sjostrom, Kimia Kayu: Dasar–dasar dan Penggunaan, 2nd ed. Yogyakarta: Universitas Gadjah Mada.

J. M. Perez, J., J. M. Dorado, T. Rubia, “Biodegradation and Biological treatments of Cellulose, Hemicellulose and Lignin: An Overview,” Int. Microbiol, vol. 5, pp. 53–63, 2002.

et al Fan, “The Nature of Lignocellulosic and Their Pretreatment for Enzymatic Hydrolysis,” Adv. Bichem. Eng., vol. 23, pp. 158–187, 1982.

R. A. dos R. Ferreira, C. da S. Meireles, R. M. N. Assunção, M. A. S. Barrozo, and R. R. Soares, “Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses,” Biomass and Bioenergy, vol. 134, no. December 2019, pp. 1–7, 2020.

M. Tewari, P. C. Singh, V.K., Gope, and A. K. Chaudhary, “Evaluation of Mechanical Properties of Bagasse-Glass Fiber Reinforced Composite,” J. Mater. Environ. Sci., vol. 3, no. 1, pp. 187–194, 2012.

K. W. Law, W. Daud, and W.R, “Oil Palm Fibers as Papermaking Material: Potentials and Challenges,” Bioresources, vol. 6, no. 1, pp. 901–917, 2011.

J. C. Gómora-Hernández, M. del C. Carreño-de-León, N. Flores-Alamo, M. del C. Hernández-Berriel, and S. M. Fernández-Valverde, “Kinetic and thermodynamic study of corncob hydrolysis in phosphoric acid with a low yield of bacterial inhibitors,” Biomass and Bioenergy, vol. 143, no. October, 2020.

B. M. Cherian, A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, “Isolation of nanocellulose from pineapple leaf fibres by steam explosion,” Carbohydr. Polym., vol. 81, no. 3, pp. 720–725, 2010.

J. de C. Pereira Scarpa et al., “Saccharification of pretreated sugarcane bagasse using enzymes solution from Pycnoporus sanguineus MCA 16 and cellulosic ethanol production,” Ind. Crops Prod., vol. 141, no. June, p. 111795, 2019.

K. Kovács, G. Szakács, and G. Zacchi, “Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes,” Process Biochem., vol. 44, no. 12, pp. 1323–1329, 2009.

D. Seftian, F. Antonius, and M. Faizal, “Pembuatan Etanol dari Kulit Pisang Menggunakan Metode Hidrolisis Enzimatik dan Fermentasi,” J. Tek. Kim., vol. 18, no. 1, pp. 10–16, 2012.

S. Hatakeyama and M. Kuwahara, “Degradation of Discharged Stump and Root of Japanese Cedar by Wood Rotting Basidiomycetes,” p. 373, 2004.

L. Agustini and L. Efiyanti, “Pengaruh Perlakuan Delignifikasi Terhadap Hidrolisis Selulosa Dan Produksi Etanol Dari Limbah Berlignoselulosa,” J. Penelit. Has. Hutan, vol. 33, no. 1, pp. 69–80, 2015.

M. M. Patel and R. M. Bhatt, “Optimisation of the alkaline peroxide pretreatment for the delignification of rice straw and its applications,” J. Chem. Technol. Biotechnol., vol. 53, no. 3, pp. 253–263, 1992.

M. Karimi, R. Esfandiar, and D. Biria, “Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production,” Renew. Energy, vol. 104, pp. 88–95, 2017.

R. Banerjee, A. D. Chintagunta, and S. Ray, “Laccase mediated delignification of pineapple leaf waste: An ecofriendly sustainable attempt towards valorization,” BMC Chem., vol. 13, pp. 1–11, 2019.

E. K. New et al., “Potential use of pure and diluted choline chloride-based deep eutectic solvent in delignification of oil palm fronds,” Process Saf. Environ. Prot., vol. 123, pp. 190–198, 2019.

T. M. Fenida, “Studi Reaksi Hidrolisis Glukosa untuk Menghasilkan Senyawa Asam Levulinat Menggunakan Katalis Homogen dan Katalis Heterogen Asam,” Universitas Indonesia, 2010.

K. Maneeintr, T. Leewisuttikul, S. Kerdsuk, and T. Charinpanitkul, “Hydrothermal and enzymatic treatments of pineapple waste for energy production,” Energy Procedia, vol. 152, pp. 1260–1265, 2018.

Y. Andayana, “Pembuatan Ethanol dari Jerami Padi dengan Proses Hidrolisis dan Fermentasi,” Jur. Tek. Kim. Fak. Teknol. Ind. UPN “Veteran” Jatim, vol. 8, no. 2, pp. 54–57, 2014.

M. A. Ahmed et al., “Dilute acid hydrolysis of sugar canebagasse using a laboratory twin gear reactor,” Renew. Energy, vol. 153, pp. 61–66, 2020.

N. M. Rilek, N. Hidayat, and Y. Sugiarto, “Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H2SO4 pada Produksi Bioetanol,” J. Teknol. dan Manaj. Agroindustri, vol. 6, no. 2, pp. 76–82, 2017.

B. Satari Baboukani, M. Vossoughi, and I. Alemzadeh, “Optimisation of dilute-acid pretreatment conditions forenhancement sugar recovery and enzymatic hydrolysis ofwheat straw,” Biosyst. Eng., vol. 111, no. 2, pp. 166–174, 2012.

L. U. S. Faria, B. J. S. Pacheco, G. C. Oliveira, and J. L. Silva, “Production of cellulose nanocrystals from pineapple crown fibers through alkaline pretreatment and acid hydrolysis under different conditions,” J. Mater. Res. Technol., vol. 9, no. 6, pp. 12346–12353, 2020.

H. Ferdiansyah, S. H. Sumarlan, and B. D. Argo, “Hidrolisis Enzimatik Menggunakan Enzim Selulase dari Trichoderma reseei dan Aspergillus niger pada Produksi Bioetanol Jerami Padi,” J. Keteknikan Pertan. Trop. dan Biosistim, vol. 3, no. 2, pp. 211–216, 2015.

B. P. Prajapati, U. K. Jana, R. K. Suryawanshi, and N. Kango, “Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production,” Renew. Energy, vol. 152, pp. 653–663, 2020.

H. Sitompul, D. R. Putra, and P. N. F, “Pengaruh Waktu dan Konsentrasi Enzim Selulase pada Proses Hidrolisis Tandan Kosong Kelapa Sawit Menjadi Glukosa,” Anal. Anal. Environ. Chem., vol. 1, no. 01, pp. 8–16, 2016.

C. Conesa, L. Seguí, N. Laguarda-Miró, and P. Fito, “Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production,” Food Bioprod. Process., vol. 100, pp. 203–213, 2016.

L. qun Jiang et al., “Selective saccharification of microwave-assisted glycerol pretreated corncobs via fast pyrolysis and enzymatic hydrolysis,” Fuel, vol. 265, no. December 2019, p. 116965, 2020.

Refbacks

  • There are currently no refbacks.