Analisis Potensi Angin di Kecamatan Mojolaban Berbasi Internet of Things (IoT)
Abstract
This research aims to (1) measure the IoT-based wind potential using wind speed and direction data collected through microcontrollers at heights of 6, 8, 10, and 12 meters; (2) determine the wind potential based on wind speed and direction in Mojolaban Sub-district; and (3) identify suitable wind turbine recommendations that align with the measurement area's conditions. The research was conducted using an experimental method. The data sources for this study include wind speed and direction measured using IoT-based microcontrollers. Purposive sampling was used for sample collection. The instruments used for data collection include anemometers for measuring wind speed and wind vanes for determining wind direction. Validation techniques involved using anemometers and compasses. The data analysis was performed using descriptive quantitative analysis. The research results indicate that the highest average wind speed occurs at a height of 12 meters. Mojolaban Sub-district has an average wind speed of 0.75 m/s, with the dominant wind direction from the north, and a maximum speed of 3.43 m/s. The wind potential in that area is not sufficiently high to be effectively utilized as a significant wind energy source due to its low level and insufficient magnitude. Vertical Savonius wind turbines are a suitable choice for harnessing low wind speeds in Mojolaban Sub-district.
Keywords
Full Text:
PDFReferences
Cendrawati, D. G., Soekarno, H., & Nasution, S. (2015). Potensi energi angin di kabupaten serdang bedagai, provinsi sumatera utara. Ketenagalistrikan Dan Energi Terbarukan, 14(1), 15–28.
Mustika, L. (2020). Pengembangan Media Konversi Energi Angin Menjadi Energi Listrik. Jurnal Pendidikan Fisika Dan Sains, 3(2), 20. https://ejurnalunsam.id/index.php/JPFS
Pamungkas, S. F., Wijayanto, D. S., & Saputro, H. (2017). Pengaruh variasi penambahan fin terhadap cut in speed turbin angin Savonius tipe S. Journal of Mechanical Engineering Education, 2(1), 169–178. http://www.iieta.org/download/file/fid/8657
Pradipto, E., & Tristanto, K. (2021). Ketahanan sistem struktur bangunan terhadap angin studi kasus : Mbaru Niang di Desa Wae Rebo, Kabupaten Manggarai, NTT. Jurnal Arsitektur Pendapa, 4(1), 01–07. https://doi.org/10.37631/pendapa.v4i1.276
Prasetya, H. Y., Wijayanto, D. S., & Saputro, T. W. (2022). Studi Eksperimental Pengaruh Jumlah Sudu dan Penggunaan End Plate terhadap Cut in Speed Turbi Angin Savonius Heliks. Jurnal Pendidikan Teknik Mesin, 4(1), 91 – 98. https://doi.org/https://doi.org/10.20961/nozel.v4i2.72230
Rajagukguk, A., Bagaskoro, A., Elektro, T., Riau, U., Bina Widya Jl Soebrantas KM, K. H., Kunci, K., Angin, K., & logger, D. (2021). Rancang Bangun Data Logger Kecepatan Angin Untuk 4 Level Ketinggian Berbasis Arduino. Antonius Rajagukguk, SNTEM, 1(November), 808–818.
Septiana, Y., & Wijaya, S. J. (2019). Perancangan Prototype Alat Pendeteksi Kelajuan dan Arah Angin Berbasis Mikrokontroler. Jurnal Algoritma, 15(2), 51–60. https://doi.org/10.33364/algoritma/v.15-2.51
Sih Setyono, J., Hari Mardiansjah, F., & Febrina Kusumo Astuti, M. (2019). Potensi Pengembangan Energi Baru Dan Energi Terbarukan Di Kota Semarang. Jurnal Riptek, 13(2), 177–186. http://riptek.semarangkota.go.id
Triono, N., Farid, M., & Medrianti, R. (2018). Pembelajaran menggunakan media karakteristik sebaran temperatur udara dan kecepatan angin di pesisir pantai Kota Bengkulu. PENDIPA Journal of Science Education, 2(2), 123–130. https://doi.org/10.33369/pendipa.2.2.123-130
Wicaksono, M. F., & Rahmatya, M. D. (2020). Implementasi Arduino dan ESP32 CAM untuk Smart Home. Jurnal Teknologi Dan Informasi, 10(1), 40–51. https://doi.org/10.34010/jati.v10i1.2836
Refbacks
- There are currently no refbacks.