PIROLISIS CAMPURAN BIOMASSA LIMBAH AMPAS KOPI DAN LIMBAH PLASTIK POLYPROPYLENE

Lutfi Ilunsa Zain, Danar Susilo Wijayanto, Taufik Wisnu Saputra

Abstract

The need for energy progressively increase, meanwhile fossil fuel reserves gradually decrease since it is nonrenewable resourses. Coffee grounds and polypropylene plastic waste can be used as alternative fuels. One of the ways to use coffee grounds and plastic waste as fuel is through the pyrolysis process. Pyrolysis is a chemical decomposition process of a material thermally in the absence of oxygen which converts RDF-4 into a liquid smoke product in the form of oil. The purpose of this study was to determine the effect of the comparison of the composition of the mixture of coffee grounds and polypropylene plastic waste on the quantity of pyrolysis oil. This study uses an experimental method with quantitative descriptive analysis techniques. This research was carried out by means of a pyrolysis process on RDF-4 a mixture of coffee grounds biomass waste and polypropylene plastic waste with various composition ratios of 0%:100%, 25%:75%, 50%:50%, 75%:25%, and 100%:0%. The pyrolysis oil is then filtered, for later testing the quantity. The test shows that there is an effect of variations in the ratio of the composition of the biomass mixture to the quantity of pyrolysis oil. RDF-4 from coffee grounds waste mixed with polypropyelene plastic waste produces a quantity that tends to decrease as the ratio of coffee grounds composition decreases. RDF-4 which is not mixed with coffee grounds or has a composition ratio of coffee grounds less than the composition ratio of polypropylene plastic waste produces pyrolysis oil with more quantity and quality that tends to be better than the ratio of other RDF-4 compositions. The quantity of pyrolysis oil produced ranged from 219.33 ml to. 1026.67 ml. RDF-4 from 100% polypropylene plastic waste produces pyrolysis oil with the highest quantity of 1026.67 ml with the highest pyrolysis temperature achieved 391°C at T1, 345.5 °C at T2, and 367.75 °C at T3.

Keywords

biomass, coffee grounds, polypropylene plastic waste, pyrolysis, fuel, renewable alternative energy

Full Text:

PDF

References

Adoe, D. G. H., & Ernanto, N. (2020). Analisis Pengaruh Temperatur pada Metode Pirolisis dari Sampah Plastik PP ( Polypropylene ) Terhadap Kapasitas Dan Kuantitas Minyak Pirolisis. Jurnal Penelitian Enjiniring (JPE), 24(2), 177–181. https://doi.org/10.25042/jpe.112020.10 Astuti, A. D., Prayitno, H. T., & Wahyudi, J. (2018). The Utilization of Plastic Waste as Raw Material for Producing Alternative Fuel. Jurnal Litbang, XIV(1), 58–67. https://doi.org/10.1007/s00289-017-1962-x Dewan Energi Nasional, S. J. (2017). Outlook Energi Indonesia 2017. Dewan Energi Nasional. Dewi, I. N. K. (2017). Karakteristik Minyak Hasil Pirolisis Batch Sampah Plastik Polystyrene. Teknik Mesin, Fakultas Teknik Universitas Panca Marga, 7(1), 52–55. Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Studies in Chemical and Environmental Engineering, 4(September). https://doi.org/10.1016/j.cscee.2021.100142 Fahmy, T. Y. A., Fahmy, Y., Mobarak, F., El-Sakhawy, M., & Abou-Zeid, R. E. (2020). Biomass Pyrolysis: Past, Present, and Future. Environment, Development and Sustainability, 22(1), 17–32. https://doi.org/10.1007/s10668-018-0200-5 Fatimura, M. (2020). Evaluasi Kinerja Reaktor Pirolisis Non Katalis Dalam Mengkonversikan Limbah Plastik Menjadi Bahan Bakar Minyak. Jurnal Ilmiah Teknik Kimia, 4(1), 1. https://doi.org/10.32493/jitk.v4i1.3725 Hanif, M., Heru, & Utami, H. (2019). Variasi Waktu dan Massa Ampas Kopi pada Leaching Minyak dari Residu Kopi Instan. Jurnal KELITBANGAN, 7(1), 49–60. Haqiqi, M. R. (2018). Rancang Bangun Mesin Pencetak Briket Pohon Pisang Tipe Ulir. Computers and Industrial Engineering, 2(January), 6. Hartanto, B., & Sartini, S. (2019). Kebijakan Pemanfaatan Energi dan Sumber Daya Energi Mineral Kelautan Indonesia. Jurnal Baruna Horizon, 2 (2), 90–106. Herliati, Prasetyo, S. B., & Verinaldy, Y. (2019). Review: Potensi limbah Plastik dan Biomassa sebagai Sumber Energi Terbarukan dengan Proses Pirolisis. Jurnal Teknologi, 6(2), 85–98. https://doi.org/10.31479/jtek.v6i2.13 Kirchkeszner, C., Petrovics, N., Tábi, T., Magyar, N., Kovács, J., Szabó, B. S., Nyiri, Z., & Eke, Z. (2022). Swelling as A Promoter of Migration of Plastic Additives in The Interaction of Fatty Food Simulants with Polylactic acid- and Polypropylene-Based Plastics. Food Control, 132. https://doi.org/10.1016/j.foodcont.2021.108354 Makhsud, A. (2016). Pengaruh Suhu Terhadap Produksi Asap Cair dari Blending Limbah Biomassa Cangkang Sawit dengan Batubara secara Pirolisis. Journal Of Chemical Process Engineering, 01(01), 1–8. Qu, Y., Li, A., Wang, D., Zhang, L., & Ji, G. (2019). Kinetic Study of The Effect of In-situ Mineral Solids on Pyrolysis Process of Oil Sludge. Chemical Engineering Journal, 374(May), 338–346. https://doi.org/10.1016/j.cej.2019.05.183 Riupassa, H., Baharuddin, M. N., Petroleum, B., Pengajar, S., Studi, P., & Mesin, T. (2018). Pemanfaatan Limbah Plastik Melalui Proses Pirolisis sebagai Bahan Bakar Alternatif. Jurnal Teknik Mesin, 7(1), 43–52. Soolany, C. (2020). Rancang Bangun Pencetak Briket Tipe Screw untuk Proses Produksi Briket Pelet dari Arang Cangkang Kakao. AME (Aplikasi Mekanika Dan Energi): Jurnal Ilmiah Teknik Mesin, 6(2), 62. https://doi.org/10.32832/ame.v6i2.3260 Udyani, K., Ningsih, E., & Arif, M. (2018). Pengaruh Temperatur Pirolisis terhadap Yield dan Nilai Kalor Bahan Bakar Cair dari Bahan Limbah Kantong Plastik. Seminar Nasional Sains Dan Teknologi Terapan VI, 2013, 389–394. Van Nguyen, Q., Choi, Y. S., Choi, S. K., Jeong, Y. W., & Han, S. Y. (2021). Co-pyrolysis of Coffee-grounds and Waste Polystyrene Foam: Synergistic Effect and Product Characteristics Analysis. Fuel, 292(December 2020), 120375. https://doi.org/10.1016/j.fuel.2021.120375

Refbacks

  • There are currently no refbacks.