Pengaruh Desain Magnet Pada Rotor Generator Dan Variasi Kecepatan Angin Terhadap Energi Listrik Yang Dihasilkan Oleh Turbin Angin Sumbu Horizontal Skala Mikro
Abstract
Energy use in Indonesia is increasing while energy reserves in Indonesia are running low. In an effort to meet energy needs in Indonesia, there must be the development of renewable energy sources by utilizing wind energy to be converted into electrical energy using a horizontal wind turbine generator. To optimize the wind turbine generator, you can change its parameters, one of which is by changing the design of the generator magnet.
The method used in this study is an experimental method, where the variables used in this study are the design of the magnet skew, the design of the interior magnet and the design of the magnet surface. This research was conducted at wind speeds of 1 m/s to 5 m/s using a wind tunnel. Tests were carried out using 12 V and 24 V lamp loads and no-load tests to determine the power generated by each generator.
The results of the research are the design of the magnet on the generator rotor and variations in wind speed affect the power produced by the wind turbine, the magnetic skew produces a power of 0.974 W, the interior magnet produces a power of 0.674 W and the surface magnet produces a power of 1.386 W. Tests without load and speed variations The wind affects the power produced by the wind turbine, where the power at the generator cannot be calculated. Tests with loading and wind speed variations affect the power produced by the wind turbine, where each loading test has various results such as when a load is given to the magnetic surface design at a wind speed of 5 m/s with a loading of 24 V producing a power of 1.386 W.Keywords
Full Text:
PDFReferences
Achmad, C., Surindra, M. D., & Prasetyo, B. (2014). Unjuk Kerja Sistem Turbin Angin Sumbu Horisontal Tipe Tsd 500 Berdasarkan Nilai Tip Speed Ratio. EKSERGI Jurnal Teknik Energi, 10(2), 35–38.
Asy’ari, H., Aji, D. Y., & Candra, F. S. (2016). Desain Generator Tipe Axial Kecepatan Rendah Dengan Magnet Permanen. Jurnal Emitor, 13(02), 66–70.
BPPT. (2019). Indonesia Energy Outlook 2019: The Impact of Increased Utilization of New and Renewable Energy on the National Economy.
Budiyanto, F., Mustaqim, & Wibowo, H. (2014). Generator Turbin Angin Putaran Rendah. Jurnal Teknik Mesin UPT, 9(2), 23–31.
Hadisiswoyo, M. R., Arifianto, I., Rahmatia, S., & Elson, R. (2018). Variasi Geometri Pemodelan PM Generator Sinkron 12 Slot 8 Pole ¼ Model. 48–52.
Indriani, A. (2015). Analisis Pengaruh Variasi Jumlah Kutub dan Jarak Celah Magnet Rotor Terhadap Performan Generator Sinkron Fluks Radial. Jurnal Rekayasa dan Teknologi Elektro, 9(2), 62–71.
Jamali Arand, S., & Ardebili, M. (2016). Cogging torque reduction in axial-flux permanent magnet wind generators with yokeless and segmented armature by radially segmented and peripherally shifted magnet pieces. Renewable Energy, 99, 95–106. https://doi.org/10.1016/j.renene.2016.06.054
KESDM. (2019). Statistik ketenaga listrikan. KESDM, 53(9), 1689–1699.
Kumar, V. M. (2016). Modeling and analysis of wind turbine blade with advanced materials by simulation. 11(6), 4491–4499.
Maghfira, E., Harahap, A., Rosma, I. H., & Hamzah, A. (2020). Analisis Pengaruh Posisi Peletakan Magnet Permanen di Rotor Terhadap Kinerja Generator Sinkron Magnet Permanen. 7(November 2020), 1–6. https://doi.org/10.13140/RG.2.2.36271.56484
Pramono, G. E., Muliawati, F., & Kurniawan, N. F. (2017). Desain dan Uji Kinerja Generator AC Fluks Radial Menggunakan 12 Buah Magnet Permanen Tipe Neodymium (NdFeB) Sebagai Pembangkit Listrik. Juteks, 4, 34–40.
Prasetyo, A., Notosudjono, D., Soebagja, H., Listrik, T. P., Angin, T., Studi, P., Elektro, T., & Pakuan, F. T. (2018). Studi Potensi Penerapan dan Pengembangan Pembangkit Listrik Tenaga Angin di Indonesia. 1–12.
Wijaya, F. D., W, Y. S., Nugroho, R. A., Jurusan, M., Elektro, T., & Ugm, F. T. (2014). Perancangan Generator Magnet Permanen Fluks Aksial Putaran Rendah. 21–26.
Refbacks
- There are currently no refbacks.