Analisis Perpindahan Kalor Pada Double Pipe Heat Exchanger Beraliran Lawan Arah Menggunakan Sirip Trapesium Dengan Fluida Cair

Muhammad Tsany Zulfahmi, Danar Susilo Wijayanto, Indah Widiastuti

Abstract

This study aims to analyze the counter flow performance of a double pipe heat exchanger using an experimental method with the influence of the flow rate of hot and cold substances. The results showed that the counter-flow double-pipe heat exchanger produced a total heat transfer coefficient of 69.229 W/m2. The double pipe heat exchanger produces Reynolds number of 82.17 and Nusselt number of 1.18 in hot fluids, while in cold fluids it produces Reynolds number of 4.528.42 and Nusselt number of 31.52. The double pipe heat exchanger has an effectiveness rate of 116.16%.

Keywords

heat exchanger counter flow double-pipe, fin, liquid fluid, heat transfer, LMTD, NTU Effectiveness

Full Text:

PDF

References

Amini, R., Amini, M., Jafarinia, A., & Kash, M. (2018). Numerical investigation on effects of using segmented and helical tube fins on thermal performance and efficiency of a shell and tube heat exchanger. 138(March), 750–760.

Awwaluddin, M. (2007). Analisa Perpindahan Kalor pada Heat Exchanger Pipa Ganda dengan Sirip Berbentuk Delta Wing. In Igarss 2014 (Vol. 2, Issue 1).

Babus’Haq, R., & Probert, S. D. (1991). Radiation heat transfer: Fundamentals and applications. Applied Energy, 39(4), 341–344.

Borjigin, S., Zhang, S., Ma, T., Zeng, M., & Wang, Q. (2020). Performance enhancement of cabinet cooling system by utilizing cross-flow plate heat exchanger. Energy Conversion and Management, 213(April), 112854.

Budiman, A., Syarief, A., & Isworo, H. (2014). Analisis Perpindahan Panas dan Efisiensi Efektif High Pressure Heater (HPH) di PLTU Asam-Asam. Jurnal Ilmiah Teknik Mesin Unlam, 03(2), 76–82.

Cengel, Y. A., & Cimbala, J. M. (2016). Fluid Mechanics Fundamentals and Applications.

Cengel, Y. A., & Ghajar, A. J. (2007). Heat and Mass Transfer Fundamentals and Applications. In Heat and Mass Transfer (Fifth Edit). McGraw- Hill Education.

Chalim, A., Ariani, Mufid, & Hardjono. (2017). Koefisien Perpindahan Kalor Total ( U ) Sistim Air- Etilen Glikol Menggunakan Alat Penukar Kalor Shell and Tube. Prosiding Seminar Nasional Rekayasa Proses Industri Kimia, 1, 69–76.

Cheng, M., Chen, Z., Liao, Q., Zhang, J., & Ding, Y. (2019). Experimental research on the ash deposition characteristics of 3-D finned tube bundle. Applied Thermal Engineering, 153(November 2018), 556–564.

Dinesh Kumar, S., Chandramohan, D., Purushothaman, K., & Sathish, T. (2020). Optimal hydraulic and thermal constrain for plate heat exchanger using multi objective wale optimization. Materials Today: Proceedings, 21, 876–881.

Forsberg, C. H. (2021). Heat Transfer Principles and Applications. Katey Birtcher.

Galeazzo, F. C. C., Miura, R. Y., Gut, J. A. W., & Tadini, C. C. (2006). Experimental and numerical heat transfer in a plate heat exchanger. Chemical Engineering Science, 61(21), 7133–7138.

Holman, J. P. (2002). Heat Transfer Tenth Edition. In The Mc Graw Hill Companies (10th ed.).

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2015). Fundamentals of Heat and Mass Transfer. In Fluid Mechanics and its Applications (6 th, Vol. 112).

Istanto, T., & Juwana, W. E. (2011). Pengujian Karakteristik Perpindahan Panas dan Faktor Gesekan pada Penukar Kalor Pipa Konsentrik dengan Sisipan Pita Terpilin Berlubang. Jurnal Mechanical, 10(1), 7–14.

J. H. Keenan, F. G. Keyes, P. G. Hill, A., & Moore, J. G. (1969). Index to Tables in SI Units. In Fundamentals of Engineering Thermodynamics.

Jouhara, H., Almahmoud, S., Chauhan, A., Delpech, B., Bianchi, G., Tassou, S. A., Llera, R., Lago, F., & Jos, J. (2017). Experimental and theoretical investigation of a fl at heat pipe heat exchanger for waste heat recovery in the steel industry. 141, 1928–1939.

Kern, D. Q. (1997). Process Heat Transfer. In Tate McGraw-Hill Publishing Company.

Liu, X., Yu, J., & Yan, G. (2020). An experimental study on the air side heat transfer performance of the perforated fi n-tube heat exchangers under the frosting conditions. Applied Thermal Engineering, 166(September 2019), 114634.

Mariam, S., Pribadi, K., Heru, G. B., Rosidi, A., & Juarsa, M. (2013). Kalibrasi Termokopel Tipe-K pada Bagian Uji Heating-03 menggunakan cDAQ - 9188. Sigma Epsilon, 17(4), 160–168.

Nitsche, M., & Gbadamosi, R. (2015). Heat Exchanger Design Guide A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers. Joe Hayton.

Prasetio Nugroho. (2012). Bilangan reynolds untuk Aliran Evaporasi Dua Fasa pada Kanal Mini Horizontal dengan Refrigeran R-290 dan R-600A. Universitas Indonesia.

Roetzel, W., Luo, X., & Chen, D. (2020). Heat exchangers and their networks: A state-of-the-art survey. In Design and Operation of Heat Exchangers and their Networks (Issue 2012). Elsevier Inc.

Singh, A., & Singh, S. (2017). CFD investigation on roughness pitch variation in non-uniform cross- section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct. Energy, 128, 109–127.

Sivalakshmi, S., Raja, M., & Gowtham, G. (2020). Proceedings Effect of helical fins on the performance of a double pipe heat exchanger. Elsevier, 30, 1–4.

Stewart M. & Lewis O.T. (2013). Heat Transfer Theory. In Heat Exchanger Equipment Field Manual (pp. 1–91).

Sunu, P. W., Anakottapary, D. S., & Santika, W. G. (2016). Efektifitas Perpindahan Panas pada Double Pipe Heat Exchanger dengan Groove. May, 7–8.

Yan, S. R., Moria, H., Pourhedayat, S., Hashemian, M., Assadi, S., Sadighi Dizaji, H., & Jermsittiparsert, K. (2020). A critique of effectiveness concept for heat exchangers; theoretical-experimental study. International Journal of Heat and Mass Transfer, 159, 120160.

Yassin, M. A., Shedid, M. H., El-hameed, H. M. A., & Basheer, A. (2018). Heat transfer augmentation for annular flow due to rotation of inner finned pipe. International Journal of Thermal Sciences, 30(40), 1–8.

Refbacks

  • There are currently no refbacks.