Performance of Vortex Turbines with Two-Stage Radial-Offset Runners

Aulia Fathurrohman, Muhamad Dwi Septiyanto, Solikin Andriyanto, Ari Prasetyo, Dominicus Danardono Dwi Prija Tjahjana, Syamsul Hadi

Abstract

Gravitational water vortex turbines are environmentally friendly power generation systems that convert the energy of vortex water flow into mechanical energy using turbine runners. This study aims to analyze the effect of a two-stage configuration with varied radial runner positions and water discharge on turbine performance. Experiments were conducted using a low-speed water channel with a conical basin to generate vortex flow. Savonius-type runners were installed vertically in two stages with radial positions of 0.5, 0.6, and 0.7 relative to the basin radius. Each configuration was tested at several water discharge rates. The primary parameter measured was mechanical power output, which was obtained using torque sensors and rotational speed meters to provide precise data. Results showed that the radial position 0.5 produced the best performance, generating 12.28 watts in the first and 16.68 watts in the second. Runner position and water discharge directly influenced vortex stability and energy conversion efficiency. The two-stage configuration with optimal runner placement significantly improved system efficiency. These findings suggest that the two-stage vortex turbine design is promising for small-scale power generation in remote areas.

Full Text:

PDF

References

P. Sritram dan R. Suntivarakorn, “The effects of blade number and turbine baffle plates on the efficiency of free-vortex water turbines,” IOP Conf Ser Earth Environ Sci, vol. 257, hlm. 012040, Mei 2019, doi: 10.1088/1755-1315/257/1/012040. 2 S. Dhakal dkk., “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant,” Renewable and Sustainable Energy Reviews, vol. 48, hlm. 662–669, Agu 2015, doi: 10.1016/j.rser.2015.04.030. 3 M. N. Hidayat, F. Ronilaya, I. H. Eryk, dan G. Joelianto, “Design and analysis of a portable spiral vortex hydro turbine for a Pico Hydro Power Plant,” IOP Conf Ser Mater Sci Eng, vol. 732, no. 1, hlm. 012051, Jan 2020, doi: 10.1088/1757-899X/732/1/012051. [4] T. C. Kueh, S. L. Beh, Y. S. Ooi, and D. G. Rilling, “Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance,” Journal of Physics: Conference Series, vol. 822, p. 012066, Apr. 2017, doi: 10.1088/1742-6596/822/1/012066. [5] D. S. Pamuji, N. Effendi, dan D. Sugati, “Numerical study on the performance and flow field of varied conical basin for efficient gravitational water vortex power plant,” 2019, hlm. 020001. doi: 10.1063/1.5138256. [6] A. B. Timilsina, S. Mulligan, dan T. R. Bajracharya, “Water vortex hydropower technology: a state-of-the-art review of developmental trends,” Clean Technol Environ Policy, vol. 20, no. 8, hlm. 1737–1760, Okt 2018, doi: 10.1007/s10098-018-1589-0. [7] A. S. Saleem, Rizwanullah, dan T. A. Cheema, “Experimental Investigation of Various Blade Configurations of Gravitational Water Vortex Turbine (GWVT),” dalam 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), IEEE, Sep 2018, hlm. 1–5. doi: 10.1109/PGSRET.2018.8685977. [8] T. A. Cheema, R. Ullah, dan A. S. Saleem, “Performance analysis of a two-stage gravitational water vortex turbine,” IOP Conf Ser Earth Environ Sci, vol. 291, no. 1, hlm. 012039, Jun 2019, doi: 10.1088/1755-1315/291/1/012039. [9] R. Ullah, T. A. Cheema, A. S. Saleem, S. M. Ahmad, J. A. Chattha, dan C. W. Park, “Preliminary experimental study on multi-stage gravitational water vortex turbine in a conical basin,” Renew Energy, vol. 145, hlm. 2516–2529, Jan 2020, doi: 10.1016/j.renene.2019.07.128. [10] S. Dhakal dkk., “Effect of Dominant Parameters for Conical Basin: Gravitational Water Vortex Power Plant”, doi: 10.13140/RG.2.1.1455.7843. [11] A. T. Kora, V. R. Ancha, dan G. S. Tibba, “Numerical analysis of the effect of runner-to-basin diameter ratio on the performance of gravitational water vortex turbine in a scroll basin,” International Journal of Energy and Environmental Engineering, vol. 13, no. 4, hlm. 1317–1333, Des 2022, doi: 10.1007/s40095-022-00495-4. [12] R. Dhakal and K. Khanal, “Computational and Experimental Investigation of Runner for Gravitational Water Vortex Power Plant,” Dec. 2017, doi: 10.31219/osf.io/4r5cj. [13] D. S. Edirisinghe, H.-S. Yang, S. D. G. S. P. Gunawardane, and Y.-H. Lee, “Enhancing the performance of gravitational water vortex turbine by flow simulation analysis,” Renewable Energy, vol. 194, pp. 163–180, Jul. 2022, doi: 10.1016/j.renene.2022.05.053. [14] B. Pranoto et al., “Indonesian hydro energy potential map with run-off river system,” IOP Conference Series: Earth and Environmental Science, vol. 926, no. 1, p. 012003, Nov. 2021, doi: 10.1088/1755-1315/926/1/012003. [15] Rieky Handoko, Muhamad Dwi Septiyanto, Dominicus Danardono Dwi Prija Tjahjana, Dwi Aries Himawanto, Indri Yaningsih, and Syamsul Hadi, “Performance Testing and Analysis of Gravitational Water Vortex Turbine: A Modified Experimental Study on Blade Arc and Inclination Angle,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 109, no. 1, pp. 147–161, Oct. 2023, doi: 10.37934/arfmts.109.1.147161. [16] P. Sritram and R. Suntivarakorn, “The effects of blade number and turbine baffle plates on the efficiency of free-vortex water turbines,” IOP Conference Series: Earth and Environmental Science, vol. 257, p. 012040, May 2019, doi: 10.1088/1755-1315/257/1/012040. [17] R. Dhakal et al., “Notice of Violation of IEEE Publication Principles: Computational and experimental investigation of runner for gravitational water vortex power plant,” 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), Nov. 2017, doi: 10.1109/icrera.2017.8191087. [18] A. S. Saleem et al., “Parametric study of single-stage gravitational water vortex turbine with cylindrical basin,” Energy, vol. 200, p. 117464, Jun. 2020, doi: 10.1016/j.energy.2020.117464. [19] N. Maika, W. Lin, and M. Khatamifar, “A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation,” Energies, vol. 16, no. 14, p. 5394, Jul. 2023, doi: 10.3390/en16145394. [20] S. Dhakal, S. Nakarmi, P. Pun, A. B. Thapa, and T. R. Bajracharya, “Development and Testing of Runner and Conical Basin for Gravitational Water Vortex Power Plant,” Journal of the Institute of Engineering, vol. 10, no. 1, pp. 140–148, Aug. 2014, doi: 10.3126/jie.v10i1.10895. [21] S. Dhakal et al., “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 662–669, Aug. 2015, doi: 10.1016/j.rser.2015.04.030. [22] Danieal Aderson Sinaga, Muhamad Dwi Septiyanto, Zainal Arifin, Gunawan Rusdiyanto, Singgih Dwi Prasetyo, and Syamsul Hadi, “The Effect of Blade Distances on the Performance of Double-Stage Gravitational Water Vortex Turbine,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 109, no. 1, pp. 196–209, Oct. 2023, doi: 10.37934/arfmts.109.1.196209. [23] R. Ullah, T. A. Cheema, A. S. Saleem, S. M. Ahmad, J. A. Chattha, and C. W. Park, “Performance analysis of multi-stage gravitational water vortex turbine,” Energy Conversion and Management, vol. 198, p. 111788, Oct. 2019, doi: 10.1016/j.enconman.2019.111788. [24] P. S. V. V. Srihari, P. S. V. V. S. Narayana, K. V. V. S. S. Kumar, G. J. Raju, K. Naveen, dan P. Anand, “Experimental study on vortex intensification of gravitational water vortex turbine with novel conical basin,” 2019, hlm. 020082. doi: 10.1063/1.5141252.

Refbacks

  • There are currently no refbacks.