PENDEKATAN KORELASI KANDUNGAN FRAKSI HALUS DALAM MENENTUKAN POTENSI PLASTISITAS PADA LEMPUNG BERPLASTISITAS RENDAH
Abstract
Abstract
Plasticity is a significant geotechnical characteristic that is affected by the fine-grained fraction of soil. This paper describes an alternate method for determining plasticity potential in low plasticity (CL) clays by comparing fine fraction (FC) concentration to sand content. The study used descriptive statistics and Pearson correlation to investigate the relationship that exists between consistency limits (LL, PI), grain fractions (sand, silt, clay), and derived parameters (FC, sand-silt-clay spectrum, and sand fraction ratio). Two categorisation systems, Casagrande (1948) and Moreno-Maroto (2021), were examined, revealing disparities between the CL and ML classifications, particularly at the plasticity transition region. After eliminating outliers thru the interquartile range (IQR), 61 samples were analysed, indicating significant correlations: a positive relationship between sand content and sand ratio (SR), and negative correlations between sand content and FC, as well as FC and SR. The results show that FC can be used as an alternative to predict plasticity potential behavior. The study emphasises the limits of traditional plasticity indices and recommends incorporating fine fraction analysis to improve geotechnical assessments. This approach provides a simplified, statistically proven way for assessing plasticity potential, particularly in low-plasticity clays with minimal site-specific data.
Keywords: clay plasticity; fine fraction content; low-plasticity clay; Pearson correlation; soil classification
Full Text:
PDF (Bahasa Indonesia)References
Afolagboye, L. O., Talabi, A. O., & Owoyemi, O. O. (2021). The use of Polidori’s plasticity and activity charts in classifying some residual lateritic soils from Nigeria. Heliyon, 7(8), e07713. https://doi.org/10.1016/j.heliyon.2021.e07713
Afriani, L., & Juansyah, Y. (2016). Pengaruh Fraksi Pasir dalam Campuran Tanah Lempung terhadap Nilai CBR dan Indeks Plastisitas untuk Meningkatkan Daya Dukung Tanah Dasar. Jurnal Rekayasa Teknik Sipil Universitas Lampung, 20(1).
Ahmed, S. M., & Agaiby, S. S. (2020). Strength and stiffness characterization of clays using Atterberg limits. Transportation Geotechnics, 25, 100420. https://doi.org/10.1016/j.trgeo.2020.100420
Artamonova, N., & Sheshenin, S. (2024). On Identification of Parameters of a Nonlinear Consolidation Model of Sandy Soil. PNRPU Mechanics Bulletin, 0, 31–44. https://doi.org/10.15593/perm.mech/2024.1.04
Casagrande, A. (1948). Classification and Identification of Soils. Transactions of the American Society of Civil Engineers, 113(1), 901–930. https://doi.org/10.1061/TACEAT.0006109
Dhir, R. K., Ghataora, G. S., & Lynn, C. J. (2017). Geotechnical Applications. In Sustainable Construction Materials (pp. 185–207). Elsevier. https://doi.org/10.1016/B978-0-08-100987-1.00007-X
Dolinar, B. (2010). Predicting the normalized, undrained shear strength of saturated fine-grained soils using plasticity-value correlations. Applied Clay Science, 47(3–4), 428–432. https://doi.org/10.1016/j.clay.2009.12.013
Dumbleton, M. J., & West, G. (1966). Some factors affecting the relation between the clay minerals in soils and their plasticity. Clay Minerals, 6(3), 179–193. https://doi.org/10.1180/claymin.1966.006.3.05
Firincioglu, B. S., & Bilsel, H. (2023). Unified Plasticity Potential of Soils. Applied Sciences, 13(13), 7889. https://doi.org/10.3390/app13137889
Ghahremani, M., Ghalandarzadeh, A., & Moradi, M. (2006). Effect of Plastic Fines on the Undrained Behavior of Sands. Soil and Rock Behavior and Modeling, 48–54. https://doi.org/10.1061/40862(194)5
Guimarães, A., da Motta, L. M. G., & Castro, C. D. (2019). Permanent deformation parameters of fine – grained tropical soils. Road Materials and Pavement Design, 20, 1664–1681. https://doi.org/10.1080/14680629.2018.1473283
Hussain, M., & Sachan, A. (2019). Volume Compressibility and Pore Pressure Response of Kutch Soils with Varying Plastic and Non-plastic Fines (pp. 651–665). https://doi.org/10.1007/978-981-13-6713-7_52
Jradi, L., El Dine, B. S., Dupla, J.-C., & Canou, J. (2022). Influence of low fines content on the liquefaction resistance of sands. European Journal of Environmental and Civil Engineering, 26(12), 6012–6031. https://doi.org/10.1080/19648189.2021.1927195
Knappett, J., & Craig, R. F. (2019). Craig’s Soil Mechanics. CRC Press. https://doi.org/10.1201/9781351052740
Manafi, M. S. G. (2019a). Soil Plasticity Variability and Its Effect on Soil Classification. Geotechnical Testing Journal, 42(2), 457–470. https://doi.org/10.1520/GTJ20170273
Manafi, M. S. G. (2019b). Soil Plasticity Variability and Its Effect on Soil Classification. Geotechnical Testing Journal, 42(2), 457–470. https://doi.org/10.1520/GTJ20170273
Moreno-Maroto, J. M., & Alonso-Azcárate, J. (2015). An accurate, quick and simple method to determine the plastic limit and consistency changes in all types of clay and soil: The thread bending test. Applied Clay Science, 114, 497–508. https://doi.org/10.1016/j.clay.2015.06.037
Moreno-Maroto, J. M., & Alonso-Azcárate, J. (2017). Plastic Limit and Other Consistency Parameters by a Bending Method and Interpretation of Plasticity Classification in Soils. Geotechnical Testing Journal, 40(3), 467–482. https://doi.org/10.1520/GTJ20160059
Moreno-Maroto, J. M., Alonso-Azcárate, J., & O’Kelly, B. C. (2021). Review and critical examination of fine-grained soil classification systems based on plasticity. Applied Clay Science, 200, 105955. https://doi.org/10.1016/j.clay.2020.105955
Okkels, N. (2018, January). Modern guidelines for classification of fine soils Lignes directrices modernes pour la classification des sols fins.
Papadopoulou, A. I., & Tika, T. M. (2016). The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands. Soil Dynamics and Earthquake Engineering, 88, 191–206. https://doi.org/10.1016/j.soildyn.2016.04.015
Reiffsteck, P. (2005). Evaluation of erosion of soil used in dykes and earth embankments which are subjected to flood.
Shakoor, A. (2016). Atterberg Limits (pp. 1–4). https://doi.org/10.1007/978-3-319-12127-7_22-1 Tsai, P.-H., Lee, D.-H., Kung, G. T.-C., & Hsu, C.-H. (2010). Effect of content and plasticity of fines on liquefaction behaviour of soils. Quarterly Journal of Engineering Geology and Hydrogeology, 43(1), 95–106. https://doi.org/10.1144/1470-9236/08-019
Vardanega, P. J., & Haigh, S. K. (2014). Some Recent Developments in the Determination of the Atterberg Limits. Advances in Transportation Geotechnics and Materials for Sustainable Infrastructure, 48–55. https://doi.org/10.1061/9780784478509.007
Wang, M., Chen, P., Yi, P., & Ma, T. (2023). Effect of Fines Content on Pore Distribution of Sand/Clay Composite Soil. Sustainability, 15(12), 9216. https://doi.org/10.3390/su15129216
Won, J., Park, J., Kim, J., & Jang, J. (2021). Impact of Particle Sizes, Mineralogy and Pore Fluid Chemistry on the Plasticity of Clayey Soils. Sustainability, 13(21), 11741. https://doi.org/10.3390/su132111741
Yusof, N. Q. A. M., & Zabidi, H. (2018). Reliability of Using Standard Penetration Test (SPT) in Predicting Properties of Soil. Journal of Physics: Conference Series, 1082, 012094. https://doi.org/10.1088/1742-6596/1082/1/012094
Zulfa, N. I., & Bowo, C. (2023). Tekstur dan Bahan Organik Tanah Serta Hubungannya dengan Batas Atterberg dan Aktivitas Liat. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 327–334. https://doi.org/10.21776/ub.jtsl.2023.010.2.16
Refbacks
- There are currently no refbacks.





