PENGARUH PASIR, ABU TERBANG, DAN AIR PADA KARAKTERISTIK MEKANIS TANAH LEMPUNG
Abstract
The shear strength and bearing capacity of soil are influenced by its type, mineral composition, and particle size. Both cohesion and the friction angle play significant roles in determining soil strength, while density is crucial for supporting forces. This study examines the effects of grain size, soil minerals, and water content on the shear strength and bearing capacity of soil. Various tests such as California Bearing Ratio, Direct Shear, and Unconfined Compression Test are conducted on sand and clay, compacted with different numbers of strikes and water contents. The study also explores the impact of organic soil and fly ash on shear strength. Additionally, immersion tests are performed to assess how water absorption affects the soil’s properties. Results show that compression at the optimum moisture content (OMC) produces the highest strength, while compression at higher moisture levels results in greater strength loss compared to drier conditions. At a constant water content, increased soil density leads to higher bearing capacity. Conversely, excess water content reduces the soil's strength. The presence of clay, fly ash, and organic material increases water absorption capacity. In sandy soils, the distribution of grain size significantly influences shear behavior. The addition of clay enhances both the friction angle and soil cohesion, while higher fly ash content tends to reduce the friction angle and improve soil cohesion. Interestingly, cohesion appears to be unaffected by the sand's gradation.
Keywords: bearing capacity, clay, fly ash, shear strength, sand.
Full Text:
PDF (Bahasa Indonesia)References
Afrin, H. (2017). A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), 19-24.
Bowles, J.E. (1981). Physical and geotechnical properties of soils.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(6), p.109. doi:10.1016/0148-9062(81)90529-5.
Budhu, M. (2011). Soil mechanics and foundations. 12th edn. New York: John Wiley & Sons.
Hardiyatmo, H.C. (2002). Mekanika Tanah I. 3rd edn. Yogyakarta: Universitas Gadjah Mada.
Hartosukma, E.W. (2005). Perilaku tanah lempung ekspansif Karangawen Demak akibat penambahan semen dan fly ash sebagai stabilizing agents. Tesis. Universitas Diponegoro.
Luhur, B., Ariyanto, A. and Rismalinda. (2016). ‘Stabilisasi tanah gambut dengan campuran Portland cement ditinjau dari nilai California Bearing Ratio (CBR)’, Jurnal Teknik Sipil, 3(1), pp.1–7.
Nugroho, S.A., Fatnanta, F. and Lembasi, M.K. (2022). ‘Pengaruh nilai CBR terhadap penambahan fly ash dan bottom ash pada tanah lempung’, Rekayasa Sipil, 16(1), pp.15–24.
Nugroho, S.A., Muhardi, M. and Ningrum, P. (2016). Pemanfaatan limbah abu terbang PT IKPP untuk campuran tanah setempat sebagai timbunan subgrade jalan.
Nugroho, S.A., Suratman and Pratama, D. (2017). ‘Kajian rentang kadar air terhadap nilai kuat geser perbaikan sirtu dengan metode CTB’, in KoNTekS 11, October, pp.47–54.
Nugroho, S.A., Wibisono, G. and Kasbi, F. (2013). ‘Analisa peningkatan kekuatan tanah yang diperkuat serat dan bahan stabilisasi pada sisi kering dan sisi basah’, Jurnal Teknik Sipil, 12(2), pp.137–144.
Nugroho, S.A., Zulnasari, A., Fatnanta, F. and Putra, A.D. (2022). ‘Mechanical behavior of clay soil stabilized with fly ash and bottom ash’, Makara Journal of Technology, 26(1), pp.1–7. doi:10.7454/mst.v26i1.1444.
Pham, V., Oh, E., & Ong, D. (2022). Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming. Neural Computing and Applications, 34, 9103-9121. https://doi.org/10.1007/s00521-022-06931-0.
Samangani, A., & Naderi, R. (2022). Numerical and Larg-Scale Laboratory Study of Rock Column Groups in Sandy Soil Behavior Improvement. Advances in Civil Engineering. https://doi.org/10.1155/2022/9259093.
Sharma, L., Sirdesai, N., Sharma, K., & Singh, T. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152, 183-195. https://doi.org/10.1016/J.CLAY.2017.11.012.
Yaghoubi, M., Arulrajah, A., Disfani, M., Horpibulsuk, S., Darmawan, S., & Wang, J. (2019). Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 167, 33-42. https://doi.org/10.1016/J.CLAY.2018.10.005.
Zeng, L., Bian, X., Zhao, L., Wang, Y., & Hong, Z. (2021). Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. Geomechanics for Energy and the Environment, 25, 100195. https://doi.org/10.1016/j.gete.2020.100195.
Zulnasari, A., Nugroho, S.A. and Fatnanta, F. (2021). ‘Perubahan nilai kuat tekan lempung lunak distabilisasi dengan kapur dan limbah pembakaran batubara’, Jurnal Rekayasa Sipil, 17(1), pp.24–36.
Refbacks
- There are currently no refbacks.





