Identifikasi Bahaya dan Penilaian Risiko dalam Pekerjaan Pengecoran Beton untuk Proyek Gedung dengan Metode *Analytic Hierarchy Process* (AHP)

Widi Hartono¹⁾, Hanan Nur Rahmah²⁾, Sugiyarto³⁾

¹⁾ Pengajar Fakultas Teknik, Jurusan teknik Sipil, Universitas Sebelas Maret ²⁾Mahasiswa Fakultas Teknik, Jurusan teknik Sipil, Universitas Sebelas Maret ³⁾ Pengajar Fakultas Teknik, Jurusan teknik Sipil, Universitas Sebelas Maret Jl. Ir. Sutami 36A, Surakarta 57126; Telp. 0271-634524. Email: hananfts@gmail.com

Abstract

Construction work is one of the areas that have the greatest risk compared with other industries. This is because the work is quite complex and requires expertise. In every building project, concrete is the most used material so that makes the work of casting the concrete becomes very important to understand. Based on the that background, this research on construction risk identification and assessment was conducted to help achieve maximum results. The data were taken in the form of primary data interviews and questionnaire data as well as secondary data from the literature. The data used in this study were analyzed with methods to evaluate the significance of the risk rating in construction projects, namely by multiplying the severity and frequency level. After that, to determine the risk weights, the data were analyzed using AHP (Analytic Hierarchy Process) method. The analysis showed on concrete casting work the risks that are included in the category of High Risk are 'Safety Unawareness' which has a value of 15,5333 and 'Delay of the Material and Equipment Availability' has a value of 10.3889. While the risks that have the greatest value of Risk Index is Safety Unawareness (2.2693), Cuts/Lacerations (2.1264), and the Workers slip / fall (2.0277). The most common Risk Responses that the Respondents choose are 'Risk Transfer with Insurance' and 'Risk Reduction to Acceptable Limit' which each both have value of 23%.

Key words: AHP, Concrete Casting, Hazard Identification, Risk Assessment

Abstrak

Pekerjaan konstruksi merupakan salah satu bidang yang memiliki risiko paling besar dibandingkan dengan industri lain. Hal ini disebabkan karena pekerjaan yang dilakukan cukup kompleks dan membutuhkan keahlian yang tinggi. Pada setiap pembangunan gedung, beton adalah bahan material yang paling sering digunakan sehingga pekerjaan pengecoran beton menjadi sangat penting untuk dipahami. Berdasarkan latar belakang diatas perlu dilakukan penelitian tentang identifikasi bahaya dan penilaian risiko konstruksi pada pekerjaan tersebut untuk membantu mencapai hasil yang maksimal.Data-data yang diambil berupa data primer yang didapat wawancara, data kuisioner serta data sekunder yang didapat dari studi pustaka. Data yang digunakan dalam penelitian ini dianalisis dengan metode untuk mengevaluasi signifikansi dari peringkat risiko dalam proyek konstruksi yaitu dengan mengalikan tingkat keparahan dan tingkat frekuensi. Setelah itu untuk mengetahui bobot risiko digunakan metode AHP (Analytic Hierarchy Process). Hasil analisis menunjukkan pada pekerjaan pengecoran beton risiko yang termasuk dalam kategori High Risk adalah 'Ketidaksadaran Akan Keselamatan' yang memiliki nilai 15,5333 dan 'Keterlambatan Kesediaan Material dan Peralatan' yang bernilai 10,3889. Sedangkan risiko yang memiliki nilai Risk Index paling besar adalah Ketidaksadaran akan keselamatan (2,2693), Terpotong/terbaret/tertusuk (peralatan/material yang bernjung tajam, dll) (2,1264), dan Pekerja terpeleset/terjatuh (2,0277). Penanganan risiko yang paling banyak dipih oleh responden adalah 'Memindahkan Risiko dengan Asuransi' dan 'Mengurangi Risiko Sampai Batas yang Bisa Diterima' yang masing-masing memiliki porsi 23%.

Kata kunci: AHP, Pengecoran Beton, Identifikasi Bahaya, Penilaian Risiko

PENDAHULUAN

Pada zaman modern ini, kita bisa melihat banyak proyek pembangunan gedung, terutama di negara-negara maju dan berkembang.Menurut http://www.britannica.com (diakses Oktober 2015), Pembangunan konstruksi adalah kegiatan yang sudah ada sejak zaman dahulu kala. Kegiatan ini dimulai dengan kebutuhan murni akan lingkungan yang terkendali untuk mengurangi pengaruh iklim. Membuat tempat berlindung adalah salah satu sarana manusia agar mampu beradaptasi dengan berbagai iklim dan menjadi spesies global.Dalam setiap proyek pembangunan gedung, beton adalah salah satu material yang paling banyak dan sering digunakan. Anne Balogh (dalam tulisannya di http://www.concretenetwork.com diakses Oktober 2015), Beton adalah material ramah lingkungan dalam setiapa tahap rentang hidupnya, dari produksi bahan baku sampai ke pembongkaran, menjadikan beton pilihan alami untuk konstruksi bangunan yang berkelanjutan. Maka tidak heran, di semua proyek konstruksi gedung akan ditemukan pekerjaan pengecoran. Menurut www.ilmusipil.com (diakses Oktober 2015), pekerjaan pengecoran adalah pekerjaan penuangan beton segar ke dalam cetakan suatu elemen struktur yang telah dipasangi besi tulangan. Beton secara langsung menjadi material paling penting dalam pembangunan konstruksi gedung.Sehingga pekerjaan pengecoran menjadi salah satu pekerjaan yang paling krusial dan perlu diperhatikan dalam setiap proyek.Oleh karena itu, diperlukan identifikasi bahaya dan penilaian risiko secara dini untuk menghindari atau mengurangi kerugian dalam pekerjaan tersebut.PMI (2004), terdapat beberapa proses dalam

melaksanakan sebuah proyek, dimulai dari proses inisiasi, dilanjutkan dengan perencanaan, pelaksanaan, pengendalian, dan diakhiri dengan penutupan. Seluruh proses dalam proyek tersebut memiliki tingkat kepentingan yang sama,tetapi yang paling berpengaruh diantaranya adalah proses perencanaan, karena proses perencanaan menghasilkan perencanaan-perencanaan yang berguna untuk mengarahkan jalannya proyek.Bahaya atau *hazard* serta risiko atau *risi*kakan selalu ada di setiap aspek kehidupan manusia. Apalagi di dalam pekerjaan konstruksi, hazard dan riskakan selalu ada di setiap detil perencanaan dan pelaksanaan. Proses HIRA tidak berarti akan menghilangkan secara keseluruhan hazard dan risk yang akan dialami namun dengan jelas akan membantu untuk proses penanganannya sehingga setidaknya bisa mengurangi atau mengantisipasi hal yang akan terjadi sehingga tidak akan muncul akibat-akibat yang tidak diketahui sebelumnya. Proses HIRA ini akan dibantu dengan metode AHP (Analitic Hierarchy Process) untuk mengetahui besarnya bobot setiap risiko. Pengecoran beton memerlukan pemahaman yang cukup tentang komposisi, metode dan aplikasinya. Melakukan pekerjaan cor beton memang terlihat mudah namun apabila tidak ahli bisa jadi hasil pengecoran tidak bagus seperti keropos, retak atau bahkan bisa mengalami kerobohan sebagai dampak terparah. Apabila manajemen dari pekerjaan pengecoran beton ini tidak dilakukan dengan baik dan pekerja tidak familiar dengan apa yang ia kerjakan, maka kemungkinan suatu proyek akan mengalami banyak kerugian karena bahaya dan risiko semakin tinggi. Kerugian ini bisa berupa biaya yang akan membengkak, kecelakaan dalam pekerjaan atau waktu yang akan terbuang banyak.

LANDASAN TEORI

Tinjauan Pustaka

Samaneh Zolfagharian (2011) meneliti bahwa industri konstruksi memiliki jumlah cedera terbesar dibandingkan dengan industri lainnya.Dengan demikian, mengurangi kecelakaan dan menentukan risiko konstruksi sangatlah penting.Hasil penelitian Zolfagharian menunjukkan bahwa tidak ada perbedaan yang signifikan dalam tingkat keparahan dan frekuensi kecelakaan antara negara-negara yang diteliti. Hasil juga menunjukkan bahwa kurangnya sikap safety-forward, kurangnya kesadaran akan peraturan keselamatan, kesadaran mengenai keselamatan yang rendah dari manajer proyek, dan kurangnya pengetahuan adalah bahaya yang paling berisiko dalam konstruksi proyek. Dalam setiap kegiatan konstruksi, kita akan menemukan bahaya (hazard) dan risiko (risk), keduanya merupakan hal yang tidak akan bisa dihindari dalam aktivitas proyek konstruksi.Alok Sarkar (2007) dan Salihu Andaa Y (2011) melakukan penelitian mengenai Quality Control pada pekerjaan konstruksi beton dilihat dari beberapa aspek.Salah satu hasil dari penelitian mereka adalah kegagalan dalam pekerjaan beton bisa disebabkan oleh kurangnya pengawasan pada saat pengerjaan dan kurangnya pengetahuan mengenai pekerjaan tersebut.Berdasarkan tinjauan pustaka diatas, maka penelitian ini mencari bahaya dan risiko yang paling besar nilainya untuk pekerjaan pengecoran beton pada proyek gedung.

Dasar Teori

Pengertian bahaya (hazard) berdasarkan OHSAS 18001:2007 ialah semua sumber, situasi ataupun aktivitas yang berpotensi menimbulkan cedera (kecelakaan kerja) dan atau penyakit akibat kerja (PAK). Risk (Risiko) menurut William & Heins (1985) adalah suatu variasi dari hasil-hasil yang dapat terjadi selama periode tertentu pada kondisi tertentu. Sedangkan dalam ISO 31000 didefinisikan sebagai akibat ketidakpastian pada suatu tujan (baik positif maupun negatif). Tinus Boshoff dalam www.labourguide.co.za (diakses 10 Mei 2015) menyatakan bahwa tidak ada peraturan yang tetap mengenai bagaimana risk assessment harus dijalankan. Langkah-langkah berikut ini bisa digunakan sebagai acuan:

- 1) Memulai HIRA dan Memilih Pendekatan
- 2) Identifikasi Bahaya
- 3) Identifikasi Semua Pihak Yang Terkena Bahaya Dengan Menentukan Bagaimana Mereka Bisa Terpengaruh
- 4) Evaluasi atau Menilai Risiko

Metodologi untuk mengevaluasi signifikansi dari peringkat risiko dalam proyek konstruksi adalah sebagai berikut (Samaneh Zolfagharian, Aziruddin Ressang, 2011):

 $Risk = Frequency \times Severity.$ [1]

Metode Analytic Hierarchy Process (AHP) dikembangkan oleh Prof. Thomas Lorie Saaty dari Wharston Business school untuk mencari ranking atau urutan prioritas dari berbagai alternatif dalam pemecahan suatu permasalahan. Metode ini dipakai untuk menentukan bobot dari setiap kelompok risiko. Sehingga didapatkan Risk Index yang dimodifikasi:

 $Risk = Weight \times Frequency \times Severity.$ [2]

METODE PENELITIAN

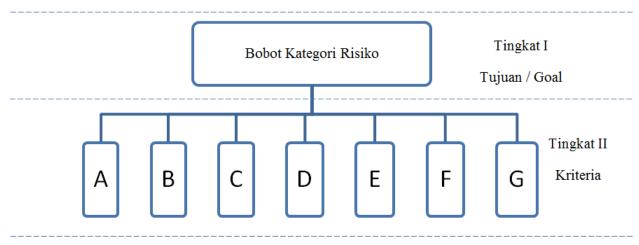
Pengumpulan data pada penelitian ini dilakukan melalui survei, wawancara dengan staf proyek yang ahli dalam pekerjaan ini, dan juga studi kepustakaan. Metode survei dan wawancara dimaksudkan untuk mengetahui permasalahan pada proyek secara mendalam. Teknik pengumpulan data melalui studi kepustakaan dilakukan dengan mempelajari buku referensi, penelitian penulis dan juga *browsing* internet mengenai beberapa metode analisis yang digunakan dalam penelitian ini.Data penelitian didapatkan dari proyek Pembangunan Rumah Sakit Indrianti dan proyek Pembangunan Rumah Sakit Dr. Oen.Dari studi kepustakaan didapatkan daftar bahaya yang mungkin terjadi pada pekerjaan pengecoran beton beserta pencegahan dan jenis penanganan apa yang bisa dilakukan. Dari survei dan wawancara didapatkan nilai kategori risiko dan bobot dari kelompok risiko. Sehingga kita bisa mengetahui *Risk Index* dan *Risk Index* Modifikasi.Selain itu akan diketahui pencegahan dan penanganan yang dipilih oleh *expert* mengenai pekerjaan pengecoran beton.

HASIL DAN PEMBAHASAN

Hasil Analisis Risiko Berdasarkan Severity dan Probability

Peneliti meminta responden untuk menilai risiko berdasarkan tingkat keparahan (severity) dan tingkat frekuensi (frequency) sesuai dengan skala peniliaian risiko menurut standar AS/NZS (Australia Standards/New Zealand Standards) 4360. Nilai risiko berdasarkan hasil perkalian severity dan frequency dapat dilihat diTabel 1.

Tabel 1 Nilai Risiko Awal


	l 1. Nilai Risiko Awal			
No	Identifikasi Bahaya dan Risiko	Kelompok Risiko	Nilai Risiko	Kategori Risiko
1	Ketidaksadaran akan keselamatan		15.33333	High
2	Keterlambatan kesediaan material dan alat		10.38889	High
3	Ketidakdisiplinan		9.5	Medium
4	Kurangnya pengetahuan dan keterampilan		9.444444	Medium
5	Terpotong/terbaret/tertusuk (peralatan/material		8.972222	Medium
	yang berujung tajam, dll)		0.55555	3.6.12
6	Pekerja terpeleset/terjatuh		8.555556	Medium
7	Material/peralatan tidak sesuai spesifikasi		8.555556	Medium
8	Cedera mata (terkena beton basah, debu, dsb)		7.916667	Medium
9	Rusaknya peralatan/material		7.555556	Medium
10	Kesalahan penempatan jumlah tenaga kerja		7.388889	Medium
11	Robohnya bekisting		7.333333	Medium
12	Peralatan/material menimpa dan menabrak		7.333333	Medium
	pekerja/fasilitas saat mobalisasi			
13	Terkena logam panas (Pengerjaan tulangan, dll)		7.111111	Medium
14	Terjadi perbedaan antara kontrak dan actual		7.083333	Medium
15	Cuaca yang buruk		6.666667	Medium
16	Jalan akses kendaraan berat menuju proyek tidak memadai		6.666667	Medium
17	Kenaikan harga material/sewa peralatan		6.138889	Medium
18	Ketidakjelasan lingkup pekerjaan		5.555556	Medium
19	Kebisingan yang berlebihan (dari gergaji listrik, dsb)		5.5	Medium
20	Keterlambatan pembayaran dari owner		5.333333	Medium
21	Mill scalle		3.888889	Low
22	Concrete burns		3.5	Low
23	Permasalahan Pajak		3.055556	Low
24	Shrinkage		3	Low
25	Bleeding		2.777778	Low
26	Retak		2.75	Low

Dari tabel di atas didapatkan bahaya dan risiko yang paling tinggi dan masuk ke dalam kategori *High* adalah 'Ketidaksadaran akan keselamatan' dan 'Keterlambatan kesediaan material dan alat' yang memiliki nilai masing-masing 15,5333 dan 10,3889.

Hasil Analisis Risiko Dengan Pengaruh Bobot dari Metode AHP

Pada penelitian ini, metode AHP digabungkan dengan metode Risk Assessment, sehingga hanya nilai bobot dari kriteria saja yang dibutuhkan dan tidak menilai alternatifnya dikarenakan penelitian ini bukan merupakan penelitian mengenai memilih diantara alternatif-alternaif yang ada. Metode ini seperti yang dilakukan Ying Lu

(2014) pada penelitiannya yang berjudul AHP-based Risk Assessment of Chemical Supply Chain dimana Ying Lu menggunakan AHP hanya sebagai alat untuk mencari bobot risiko saja dan kemudia menggabungkan bobot tersebut dengan Comprehensive Fuzzy Risk Assessment. Setelah diketahui nilai dari Severity x Frequency (SxF) seperti yang ada pada tabel 1, proses selanjutnya adalah mengkalikan nilai tersebut dengan bobot (weight) yang telah didapatkan dengan metode AHP yang telah dihitung dengan bantuan aplikasi Expert Choice 11. Bagan hirarki dari penelitian ini dapat dilihat pada Gambar 1. Bobot dari setiap kelompok risiko bisa dilihat pada Tabel 2

Gambar 1. Bagan Hirarki Kategori Risiko

Keterangan:

A = Kontraktual

B = Ekonomi

C = Kesehatan dan Kecelakaan

D = Lingkungan

E = Kualitas Beton

F = Sumber Daya Manusia

G = Material dan Peralatan

Tabel 2. Bobot Kelompok Risiko

No	Kelompok Risiko	Bobot Risiko
1	Kontraktual	0.076
2	Ekonomi	0.104
3	Material dan Peralatan	0.115
4	Lingkungan	0.122
5	Sumber Daya Manusia	0.148
6	Kualitas	0.197
7	Kesehatan dan Kecelakaan	0.237

Setelah bobot (weight) risiko didapatkan maka bobot tersebut dikalikan dengan hasil dari perkalian severity x frequency sehingga didapat Risk Index modifikasi yang dapat dilihat dalam Tabel 3 berikut.

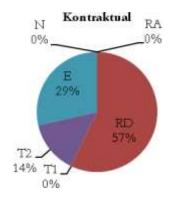
Tabel 3. Risk Index Modifikasi

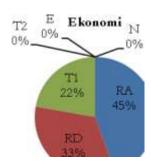
No	Identifikasi Bahaya dan Risiko	Nilai Risiko
1	Ketidaksadaran akan keselamatan	2.2693
2	Terpotong/terbaret/tertusuk (peralatan/material yang berujung tajam. dll)	2.1264
3	Pekerja terpeleset/terjatuh	2.0277
4	Cedera mata (terkena beton basah. debu. dsb)	1.8762
5	Robohnya bekisting	1.738
6	Peralatan/material menimpa dan menabrak pekerja/fasilitas saat mobalisasi	1.738
7	Terkena logam panas (Pengerjaan tulangan. dll)	1.6853
8	Ketidakdisiplinan	1.406

9	Kurangnya pengetahuan dan keterampilan	1.3978
10	Kebisingan yang berlebihan (dari gergaji listrik. dsb)	1.3035
11	Keterlambatan kesediaan material dan alat	1.1947
12	Kesalahan penempatan jumlah tenaga kerja	1.0935
13	Material/peralatan tidak sesuai spesifikasi	0.9839
14	Mill scalle	0.9217
15	Rusaknya peralatan/material	0.8689
16	Concrete burns	0.8295
17	Cuaca yang buruk	0.8133
18	Jalan akses kendaraan berat menuju proyek tidak memadai	0.8133
19	Kenaikan harga material/sewa peralatan	0.6384
20	Shrinkage	0.591
21	Bleeding	0.5472
22	Retak	0.5417
23	Terjadi perbedaan antara kontrak dan actual	0.5383
24	Ketidakjelasan lingkup pekerjaan	0.3178
25	Keterlambatan pembayaran dari owner	1.8762
26	Permasalahan Pajak	1.738

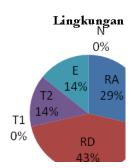
Dari hasil modifikasi Risk Index dengan mengalikan bobot (weight) maka didapatkan bahaya dan risiko yang paling besar nilainya adalah 'Ketidaksadaran akan keselamatan' dengan nilai 2.2693.

Pencegahan dan Penanganan Risiko


Berdasakan studi kepustakaan didapatkan daftar pencegahan dari setiap bahaya dan risiko.Para responden yang merupakan orang yang sudah berpengalaman di lapangan menilai apakah pencegahan tersebut efektif dengan memberi nilai skala 1-5 apakah pencegahan tersebut sering ditemui di lapangan.Dari hasil kuisioner maka didapatkan nilai pencegahan risiko adalah adalah sebagai berikut.


Tabel 4.

No	Pencegahan Risiko	Nilai Rata-Rata
1	Perencanaan akses mobilisasi dan penempatan operator yang ahli	5
2	Merancang kekuatan bekisting dengan baik	4.8333
3	Menyimpan peralatan dan material di tempat yang aman	4.8333
4	Mempelajari spesifikasi teknis sebelum membeli/menyewa alat/material	4.8333
5	Menggunakan sarung tangan dan mencuci beton yang tertinggal dari tangan sesegera mungkin	4.6667
6	Melakukan uji lab untuk mengawasi kualitas rancangan campuran beton dengan baik	4.6667
7	Budaya disiplin dimulai dari PM dan optimalisasi sistem absensi	4.6667
8	Budayakan keselamatan kerja dan berikan training K3	4.6667
9	Menjadwalkan keluar masuk kendaraan berat dengan baik	4.5
10	Perencanaan manajemen SDM yang baik	4.5
11	Koordinasi secara berkala	4.3333
12	Puing-puing konstruksi akan dibersihkan setiap hari	4.3333
13	Klarifikasi kontrak sebelum ditandatangani	4.1667
14	Memastikan lantai kerja aman dan menggunakan safety kit	4.1667
15	Memastikan bahwa design struktur tersebut sudah sesuai dengan apa yang direncanakan oleh konsultan struktur	4.1667
16	Pekerja menggunakan pelindung muka, sarung tangan, dan helm	4
17	Diberikan short course/training teknis untuk pekerja yang belum berpengalaman	4
18	Pelajari sistim dan perhitungkan penerapan pajak yang berlaku	3.8333
19	Mempelajari data dari proyek sebelumnya dan memperkerjakan ahli	3.8333
20	Menyiapkan cadangan biaya saat merancang BQ	3.66667
21	Periksa peralatan sebelum digunakan dan pelindung seperti penutup ujung besi harus berfungsi dan ada pada tempatnya	3.66667
22	Menggunakan pelindung pendengaran	3.3333
23	Menggunakan kacamata pelindung saat meletakkan beton basah	3.3333
24	Proses pengiriman beton ready mix diatur dengan memperhatikan jarak, kondisi lalu lintas, cuaca, dan suhu.	3.3333
25	Menjaga Kelembaban Beton dan Penggunaan Curing Compound setelah proses pembetonan dilakukan	3.1667

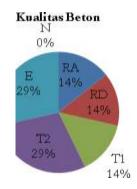

26	Mengusulkan SOP Proses Pembayaran	2.8333
27	Meminta data lamaran cuaca di BMG setempat	2

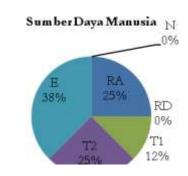
Bahaya dan risiko tetap akan ada di lapangan walaupun telah dilakukan pencegahan. Beberapa bahaya dan risiko mungkin tidak dapat dihindari.Oleh karena itu, penanganan risiko harus dipilih agar tidak merugikan proyek.Berikut adalah penanganan risiko yang dipilih oleh responden sesuai dengan kelompok risikonya.

Gambar 2. Grafik Penanganan Risiko

Keterangan:

RA Menerima Risiko


RD Mengurangi Risiko


T1 Memindahkan Risiko dengan Subcontracting

T2 Memindahkan Risiko dengan Asuransi


E Mengeliminasi Risiko

N Risiko Tidak Diperhitungkan

Gambar 3. Grafik Penanganan Risiko

Keterangan: RA Menerima Risiko

RD Mengurangi Risiko

T1 Memindahkan Risiko dengan Subcontracting

T2 Memindahkan Risiko dengan Asuransi

E Mengeliminasi Risiko

N Risiko Tidak Diperhitungkan

Secara keseluruhan, penanganan risiko yang paling banyak dipilih adalah 'Memindahkan Risiko dengan Asuransi' dan 'Mengurangi Risiko Sampai Batas yang Bisa Diterima' yang masing-masing memiliki porsi 23%.Di urutan kedua, 'Menanggung Sendiri Risiko atau Menerima Risiko' dan 'Mengeliminasi atau Menghilangkan Risiko' menjadi pilihan penanganan masing-masing 20%. Sedangkan 'Memindahkan Risiko dengan Subcontracting' menjadi pilihan terakhir sebanyak 14%.

SIMPULAN

Berdasarkan hasil dan pembahasan, maka dapat diambil kesimpulan sebagai berikut:

- 1. Dalam pekerjaan pengecoran beton, pada perhitungan yang mengalikan Severity dan Frequency didapatkan dua poin risiko yang masuk dalam kategori High Risk yaitu :
 - a. 'Ketidaksadaran Akan Keselamatan' yang bernilai 15,5333
 - b. 'Keterlambatan Kesediaan Material Dan Peralatan' yang bernilai 10,3889
- 2. Dengan metode Analytic Hierarchy Process (AHP) dan bantuan program Expert Choice 11, didapatkan bobot dari setiap kelompok risiko dalam pekerjaan pengecoran beton. Kelompok risiko yang memiliki bobot tertinggi adalah kelompok risiko 'Kesehatan dan Kecelakaan' yang memiliki bobot 0,237 dan kelompok risiko yang memiliki risiko terendah adalah 'Kontraktual' yang memiliki bobot 0,076.Ketika bobot yang didapat dari perhitungan dengan aplikasi Expert Choice 11 dikalikan dengan Frequency dan Severity, nilai Risk Index terbesar didapatkan oleh:

- a. 'Ketidaksadaran Akan Keselamatan' dengan nilai Risk Index 2,2693
- b. 'Terpotong/Terbaret/Tertusuk (Peralatan/Material Yang Berujung Tajam, Dll)' dengan nilai Risk Index 2,1264
- c. Pekerja Terpeleset/Terjatuh' dengan nilai Risk Index 2,0277
- 3. Agar pekerjaan mencapai hasil maksimal, maka kita perlu mengetahui risiko apa saja yang dapat terjadi dan menilai serta mengevaluasi risiko tersebut. Setelah itu dilakukan pencegahan risiko. Pada penelitian ini, responden menilai sudah banyak tindakan pencegahan risiko yang dilakukan di lapangan agar risiko tidak terjadi. Pencegahan dengan nilai paling tinggi sebanyak yaitu:
 - a. Perencanaan akses mobilisasi dan penempatan operator yang ahli dengan nilai 5
 - b. Menyimpan Peralatan Dan Material Di Tempat Yang Aman dengan nilai 4,8333
 - c. Mempelajari Spesifikasi Teknis Sebelum Membeli/Menyewa Alat/Material dengan nilai 4,8333

Secara keseluruhan, penanganan risiko yang paling banyak dipilih adalah 'Memindahkan Risiko dengan Asuransi' dan 'Mengurangi Risiko Sampai Batas yang Bisa Diterima' yang masing-masing memiliki porsi 23%.Di urutan kedua, 'Menanggung Sendiri Risiko atau Menerima Risiko' dan 'Mengeliminasi atau Menghilangkan Risiko' menjadi pilihan penanganan masing-masing 20%. Sedangkan 'Memindahkan Risiko dengan Subcontracting' menjadi pilihan terakhir sebanyak 14%.

UCAPAN TERIMAKASIH

Ucapan terima kasih kepada Widi Hartono, ST, MT dan Ir. Sugiyarto, MT yang telah membimbing, memberi arahan dan masukan dalam penelitian ini.

REFERENSI

Balogh, Anne. What Makes Concrete a Sustainable Building Material?.10 Oktober 2015.http://www.concretenetwork.com/concrete/greenbuildinginformation/what_makes.html

Boshoff, Tinus. HIRA Methodoloy.10 Mei 2015.http://www.labourguide.co.za/health-and-safety/1507-hira-methodology.

Carter, Gregory dan Simon D. Smith, 2006. Safety Hazard Identification On Construction Projects. American Society of Civil Engineering. America.

Lu, Ying. 2014. AHP -based Risk Assessment of Chemical Supply Chain. Advanced Science and Technology Letters. China.

Occupational Health and Safety Management System. 2007. OHSAS 18001:2007. British Standard International. United Kingdom.

PMI. 2004. A Guide to the Project Management Body of Knowledge Third Edition. Project Management Institute, Inc. United States.

Sarkar, Alok. 2007. Quality Management in Concrete Construction. India Concrete Journal. India.

Standards Australia. 2009. AS/NZS ISO 31000:2009 Risk Management – Principles and guidelines. Australia.

Zolfagharian, Samaneh, dkk. 2011. Risk Assessment of Common Construction Hazards among Different Countries. Sixth International Confrence on Construction in the 21th Century (CITC-VI). Malaysia.