Prediksi Neraca Air DAS Tirtomoyo Dengan Metode *GR2M* Berdasarkan Hujan Debit 15 Harian Tahun 2018

Ridwan Kresna Bayu¹⁾, Rintis Hadiani²⁾, Solichin³⁾

- 1) Mahasiswa Fakultas Teknik, Prodi Teknik Sipil, Universitas Sebelas Maret
- ²⁾ Pengajar Fakultas Teknik, Prodi Teknik Sipil, Universitas Sebelas Maret
- ³⁾ Pengajar Fakultas Teknik, Prodi Teknik Sipil, Universitas Sebelas Maret

Jl. Ir. Sutami 36A, Surakarta 57126; Telp. 0271-634524. Email: ridwanbayu28@gmail.com

Abstract

and coefficient of soil infiltration.

Water management is needed to maintain water availability in a watershed. Water requirment in a watershed are met if availability water is provided. It is necessary to know the water balance that occurs so that water management can be carried out optimally. This research was carried out in the Tirtomoyo watershed. This study analyzes the mainstay discharge with GR2M method. GR2M method is still rarely used to calculate water discharge in Indonesia, although only using two parameters, namely soil moisture capacity

The results show that water availability in Tirtomoyo watershed can not fulfill the water needs in 2018. The biggest deficit occurred in the second 15 daily period of April namely -8,2848 m^3 /second and the biggest surplus occurred in the second 15 daily period of February namely 8,1220 m^3 /second.

Keywords: water balance, GR2M, Tirtomoyo watershed

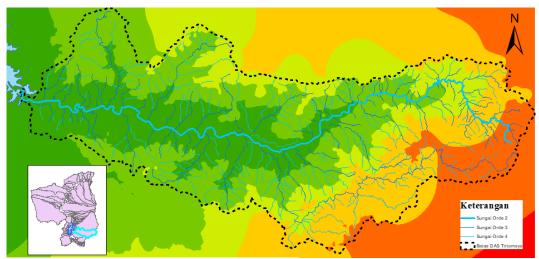
Abstrak

Pengelolan air diperlukan untuk menjaga ketersediaan air di suatu DAS (Daerah Aliran Sungai). Kebutuhan air di suatu DAS terpenuhi apabila ketersediaan air tercukupi. Perlu diketahui neraca air yang terjadi agar pengelolaan air dapat dilakukan secara optimal.

Penelitian ini dilakukan di DAS Tirtomoyo. Penelitian ini menganalisis debit andalan dengan metode *GR2M*. Metode *GR2M* jarang digunakan untuk menghitung debit di Indonesia, walaupun hanya menggunakan dua parameter, yaitu kapasitas simpanan kelembaban tanah dan koefisien penyerapan tanah.

Hasil menunjukkan bahwa ketersediaan air di DAS Tirtomoyo tidak dapat memenuhi seluruh kebutuhan air di tahun 2018. Defisit air terbesar terjadi pada bulan April periode 15 harian ke dua sebesar –8,2848 m³/detik sedangkan surplus air terbesar terjadi pada bulan Februari periode 15 harian ke dua sebesar 8,1220 m³/detik.

Kata Kunci: neraca air, GR2M, DAS Tirtomoyo


PENDAHULUAN

Air menjadi hal penting di dunia terutama di negara Indonesia, dahulu ketersediaan air dirasa melimpah. Namun sekarang ketersediaan air mengalami pergeseran karena adanya berbagai faktor sehingga ketersediaan air berkurang (Kajian Spasial Kesetimbangan Air pada Skala DAS, 2008).

Salah satu sumber air yang diperoleh masyarakat berasal dari sungai. DAS (Daerah Aliran Sungai) adalah suatu kesatuan wilayah tata air yang terbentuk secara alami. Dimana air meresap atau mengalir melalui sungai dan anakanak sungai yang bersangkutan. Guna dari DAS adalah menerima, menyimpan dan mengalirkan air yang ada melalui sungai (SNI 1724-2015). Salah satu DAS yang ada di Indonesia adalah DAS Tirtomoyo yang menjadi wilayah penelitian ini.

Pengelolan air diperlukan untuk menjaga ketersediaan air di suatu DAS. Kebutuhan air di suatu DAS terpenuhi apabila ketersediaan air mencukupi. Besarnya jumlah debit air yang mengalir pada sungai dipengaruhi oleh curah hujan.

Dalam penelitian ini debit air dihitung dengan metode GR2M, metode ini masih jarang digunakan di Indonesia. Metode GR2M memiliki kelebihan dibanding metode lain, yaitu tidak mempertimbangkan DAS basah maupun kering. Metode ini menggunakan sedikit data, yaitu curah hujan dan evapotranspirasi serta dua parameter model (Yosephina Puspa Setyoasri, 2015). Metode GR2M lebih sederhana dibandingkan metode Mock yang menggunakan banyak parameter yaitu kapasitas kelembaban tanah, keseimbangan air permukaan, kandungan air tanah, pentimpanan air tanah, koefisien infiltrasi, dan tampungan awal penyimpanan air tanah sehingga bila ada salah satu parameter atau data tidak tersedia maka metode Mock tidak dapat digunakan.

Gambar 1. Daerah aliran sungai Tirtomoyo

Gambar 1 merupakan daerah aliran sungai Tirtomoyo yang menjadi wilayah penelitian.

LANDASAN TEORI

Dasar Teori

Air menjadi hal penting di dunia terutama di negara Indonesia, dahulu ketersediaan air dirasa melimpah. Namun sekarang ketersediaan air mengalami pergeseran karena adanya berbagai faktor sehingga ketersediaan air berkurang (Kajian Spasial Kesetimbangan Air pada Skala DAS, 2008).

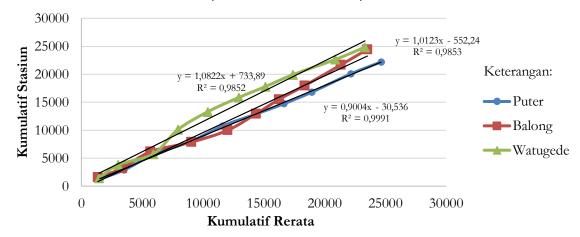
Neraca air adalah gambaran mengenai ketersediaan air dan pemanfaatannya di suatu wilayah dalam kurun waktu tertentu, untuk pencegahan kekeringan dapat dilakukan dengan menganalisa neraca air yang terjadi di wilayah tersebut (Cahyo Adi Wibowo, 2012).

Debit air yang mengalir di suatu sungai sangat dipengaruhi oleh curah hujan yang terjadi di DAS tersebut. Ketersediaan air di musim hujan dan musim kemarau berbeda, sehingga kebutuhan air tidak terpenuhi, oleh sebab itu perlu adanya pengaturan pemanfaatan air di wilayah tersebut (Lukman Hakim Nugroho Saksono, 2013).

Siklus hidrologi di suatu wilayah sangat dipengaruhi oleh curah hujan yang terjadi di wilayah tersebut. Selain curah hujan, evapotranspirasi yang terjadi juga berpengaruh terhadap siklus hidrologi (Alfrida Irfani, 2012).

Metode GR2M memiliki kelebihan dibanding metode lain, yaitu tidak mempertimbangkan DAS basah maupun kering. Metode ini menggunakan sedikit data, yaitu curah hujan dan evapotranspirasi serta dua parameter model (Yosephina Puspa Setyoasri, 2015).

METODE PENELITIAN


Penelitian ini menggunakan data sekunder. Data sekunder meliputi data hujan harian stasiun Hujan Balong, Puter dan Watugede, data statistik, data luas sawah, pola tanam, dan peta DAS Tirtomoyo.

HASIL DAN PEMBAHASAN

Uji Kepanggahan

Uji kepanggahan data hujan menggunakan uji kurva massa ganda. Data hujan tahun 2008-2017 diperoleh dari BBWS. Uji kepanggahan metode kurva massa ganda berdasarkan perbandingan jumlah hujan komulatif stasiun hujan yang ditinjau dengan rerata hujan tahunan komulatif dua atau lebih stasiun hujan yang berada di sekitarnya. Data Jumlah curah hujan stasiun Balong tahun 2008 dapat dilihat pada Lampiran. Hasil uji kepanggahan stasiun hujan Balong, Puter dan Watugede dapat dilihat pada **Gambar 2**.

Uji Validitas Data Hujan

Gambar 2. Kurva Massa Ganda

Dari **Gambar 2** diketahui nilai R2 dari masing-masing stasiun hujan mendekati satu sehingga dapat disimpulkan bahwa data hujan yang digunakan panggah.

Hujan Wilayah

Hujan wilayah mewakili hujan yang terjadi di seluruh DAS Tirtomoyo. Koefisien Thiessen digunakan sebagai pengali dalam perhitungan hujan wilayah. Rekapitulasi hujan wilayah dapat dilihat pada **Tabel 1**.

Tabel 1 Rekapitulasi hujan wilayah

	Two er i remapressas inspar what are											
Tahun	Ja	.n	Fe	eb	M	ar	A_1	pr	M	ei	Ju	ın
ranun	I	II	I	II	I	II	I	II	I	II	I	II
2008	132	150	243	167	205	140	130	41	5,3	0	0	0
2009	122	182	273	203	47	137	92	82	52	159	72	0
2010	75	66	204	151	279	335	65	69	154	69	82	21
2011	179	148	69	54	163	286	145	160	198	92	21	2,6
2012	290	153	110	300	359	207	175	63	131	4,3	2,4	24
2013	277	183	213	213	91	58	163	135	25	127	128	122
2014	254	222	116	124	59	125	138	51	15	56	0	114
2015	195	239	311	123	280	119	198	238	70	25	11	0
2016	117	209	216	193	198	117	205	92	69	86	76	66
2017	182	230	267	128	127	92	226	219	36	33	59	24

Lanjutan Tabel 1

Tahun	Ju	ıl	Αę	gs	Se	p	0	kt	No	OV	D	es
Tanun	Ι	II	I	II	Ι	II	Ι	II	I	II	Ι	II
2008	0	0	0	0	0	0	0	0	0	0	120	93
2009	0	0	0	0	0	0	0	0	55	131	40	82
2010	20	16	4	23	133	132	41	404	0	0	221	145
2011	0	0,6	0	0,6	0	0	0,6	63	185	182	137	338
2012	0	0	0	0	0	0	5,4	30	51	233	210	234
2013	60	11	0	0	0	0	0	93	124	63	110	334
2014	24	4,5	0	0	0	0	0	0	78	215	181	360
2015	0	0	0	0	0	0	0	0	65	105	154	96
2016	52	115	39	37	37	261	304	97	237	214	193	119
2017	3,5	21	0	0	0	111	49	16	59	518	0	0

Tabel 1 adalah rekapitulasi hujan wilayah 15 harian pada DAS Tirtomoyo selama 10 tahun terakhir.

Prediksi Hujan

Pada penelitian ini data hujan pada tahun 2018 belum diperoleh, untuk mendapatkan data hujan tahun 2018 perlu dilakukan prediksi dengan menggunakan *software Minitab 17* model yang digunakan adalah [(1 0 1) (0 1 1)] ²⁴, adapun data yang digunakan untuk memprediksi hujan di tahun 2018 adalah data hujan wilayah tahun 2008-2017.

Evapotranpirasi

Pada penelitian ini nilai evapotranspirasi diperoleh dengan metode Penman-Monteith yang dihitung menggunakan software CROPWAT 8.0. Data klimatologi diperoleh dari stasiun klimatologi Ngancar, adapun data input yang diperlukan untuk mencari nilai evapotranspirasi sebagai berikut:

- Koordinat stasiun klimatologi,
- Ketinggian stasiun klimatologi,
- Kelembaban udara,
- Kecepatan angin,
- Suhu udara, dan
- Penyinaran matahari.

Debit Lapangan

Debit lapangan yang diperoleh dari Pos Pengamatan Sungai Sulingi perlu diubah untuk mendapatkan nilai debit lapangan DAS Tirtomoyo dengan membandingkan luas daerahnya.

Perhitungan Simulasi Debit GR2M

Dalam menghitung simulasi hujan-debit dengan metode GR2M ada beberapa data yang diperlukan. Data tersebut adalah:

- Data hujan tahun 2008 2017
- Prediksi hujan tahun 2018
- Data evapotranspirasi tahun 2008 2017
- Kapasitas produksi (x_1) diperoleh dengan *solver* = 640
- x_2 diperoleh dengan solver = 1,02
- Nilai routing awal = R = 30 mm (maksimum = 60 mm)

Hasil perhitungan dengan debit simulasi GR2M 15-harian dikorelasikan dengan debit lapangan. Perhitungan korelasi menggunakan fasilitas Ms. Excel. Nilai korelasi pada tahun 2008 = 0,8524, karena nilai korelasi tersebut lebih dari 0,8 maka dapat dinyatakan bahwa debit simulasi GR2M 15-harian layak digunakan di DAS Tirtomoyo.

Debit Andalan

Debit andalan atau Q80 didapatkan dengan mengurutkan data debit yang diperoleh dari urutan terbesar ke terkecil kemudian dipilih data yang dapat dilampaui sebanyak 80%.

Tabel 2 Rekapitulasi debit bulanan dan ranking yang dipilih untuk Q80

D1-	Probabilitas	Debit (mm/bulan)												
Rank	Probabilitas	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des	
1	0,08	415	399	509	361	266	188	95	59	128	313	339	368	
2	0,17	411	361	499	310	184	111	90	49	115	305	267	357	
3	0,25	388	343	352	280	159	107	74	32	59	93	208	280	
4	0,33	385	339	318	279	151	100	49	28	16	21	140	273	
5	0,42	306	331	308	234	135	92	48	21	15	21	77	270	
6	0,50	265	327	285	223	134	70	32	17	11	10	75	262	
7	0,58	258	317	253	195	122	67	28	15	10	7	60	234	
8	0,67	186	301	174	161	111	61	26	13	9	6	56	99	
9	0,75	154	224	166	161	93	47	23	13	8	6	26	68	

10	0,83	109	222	154	159	69	41	22	12	7	5	18	50
11	0,92	74	127	132	146	43	20	11	7	4	3	2	14

Tabel 2 menunjukkan urutan ranking dan ranking yang dipilih adalah ranking 10 karena nilai probabilitasnya paling mendekati 80%.

Tabel 3 Debit andalan

	- · ·	Q8	0
Bulan	Periode	(mm/15hari)	(m^3/dtk)
Inn	1	29,1404	4,5545
Jan	2	79,9093	12,4895
Feb	1	115,4361	18,0421
reb	2	106,9420	16,7146
Mar	1	65,0989	10,1747
Mai	2	88,7030	13,8639
Λοπ	1	105,7801	16,5330
Apr	2	52,8771	8,2645
Mei	1	32,3878	5,0621
Mei	2	36,6009	5,7206
Luo	1	21,4506	3,3526
Jun	2	20,0391	3,1320
11	1	12,8540	2,0090
Jul	2	9,3969	1,4687
Acre	1	7,1203	1,1129
Ags	2	5,3721	0,8396
Son	1	4,1121	0,6427
Sep	2	3,1932	0,4991
Okt	1	2,6547	0,4149
OKt	2	2,1175	0,3310
Norr	1	4,2768	0,6684
Nov	2	13,7985	2,1566
Dag	1	19,6252	3,0673
Des	2	30,4716	4,7626

Tabel 3 adalah debit hujan 15 harian dari debit hujan bulanan yang dipilih berdasarkan Tabel 2.

Kebutuhan Sumber Daya Air

Data sekunder berupa jumlah penduduk dan jumlah ternak diperoleh dari BPS Kabupaten Wonogiri dan Pacitan, sedangkan data luas sawah diperoleh dari DPU Wonogiri dan BPS Kabupaten Pacitan. Kebutuhan air dihitung berdasarkan data yang telah diperoleh dengan persamaan-persamaan yang berlaku berdasarkan SNI 6728.1:2015 dan Dirjen Pengairan, Dep. PU, 1986. Hasil perhitungan dari data yang diperoleh dapat dilihat pada tabel 4, sebagai berikut:

/T 1 1	4	T) 1		1 1	. 1	•
Label	4	Keka:	Ditulasi	ket	outuhan	air

Kebutuhan Air	Satuan	Ja	ın	Fe	eb	M	ar	Apr	
Reduturian An	Satuan	Ι	II	Ι	II	Ι	II	Ι	II
RKI	m³/detik	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
Irigasi	m³/detik	0,14	0,13	0,13	0,00	0,00	0,00	3,89	5,71
Peternakan	m³/detik	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Perikanan	m³/detik	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pemeliharaan Sungai	m³/detik	5,73	5,87	11,47	8,40	12,79	7,88	12,16	10,64
Jumlah	m³/detik	6,07	6,19	11,79	8,59	12,98	8,08	16,26	16,55

Lanjutan **Tabel 4**

Kebutuhan Air	Satuan	Mei		Jun		Jul		Ags	
Reduturian An	Satuan	Ι	II	Ι	II	Ι	II	Ι	II
RKI	m³/detik	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
Irigasi	m³/detik	2,04	2,15	2,58	2,76	2,29	1,93	0,00	0,00
Peternakan	m³/detik	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Perikanan	m³/detik	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pemeliharaan Sungai	m³/detik	4,21	2,57	1,78	1,30	0,98	0,75	0,59	0,46
Jumlah	m³/detik	6,44	4,93	4,55	4,25	3,47	2,88	0,79	0,66

Lanjutan **Tabel 4**

Kebutuhan Air	Satuan -	So	ep	О	kt	Nov		Des	
Rebutunan Air	Satuan	Ι	II	Ι	II	Ι	II	Ι	II
RKI	m³/detik	0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
Irigasi	m³/detik	0,00	0,00	0,00	6,95	6,94	3,17	2,21	1,40
Peternakan	m³/detik	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Perikanan	m³/detik	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pemeliharaan Sungai	m³/detik	0,37	0,29	0,24	0,19	0,16	0,13	0,54	1,60
Jumlah	m³/detik	0,56	0,49	0,44	7,34	7,30	3,50	2,95	3,20

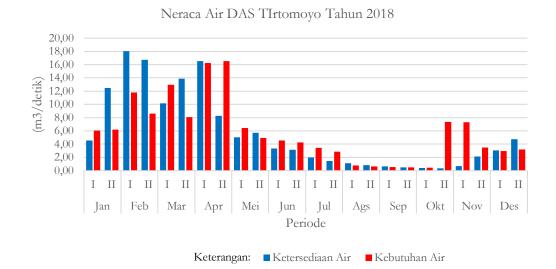
Tabel 4 menunjukkan nilai kebutuhan air yang terjadi tiap 15 hari pada DAS Tirtomoyo.

Neraca Sumber Daya Air

Neraca air ditentukan berdasarkan analisis keseimbangan ketersediaan air sungai dan kebutuhan air total di wilayah DAS Tirtomoyo. Saldo total pada tahun 2018 sebesar $-4,3933 \text{ m}^3/\text{detik}$ atau $-0.1393 \text{ x } 10^{-6} \text{ m}^3/\text{tahun}$.

Tabel 5 Neraca air

Neraca Air	Satuan	Jan		Feb		Mar		Apr	
Neraca Air	Satuan	Ι	II	Ι	II	Ι	II	Ι	II
Ketersediaan	m³/detik	4,55	12,49	18,04	16,71	10,17	13,86	16,53	8,26
Kebutuhan	m³/detik	6,07	6,19	11,79	8,59	12,98	8,08	16,26	16,55


т .		70 1		_
I an	jutan	lal	261	-
Lan	utan	Lai		•

Neraca Air	Satuan	uan — Mei		Jı	ın	Jı	ul	Ags	
Neraca Air	Satuan	Ι	II	Ι	II	I	II	Ι	II
Ketersediaan	m³/detik	5,06	5,72	3,35	3,13	2,01	1,47	1,11	0,84
Kebutuhan	m³/detik	6,44	4,93	4,55	4,25	3,47	2,88	0,79	0,66
Saldo	m³/detik	-1,38	0,80	-1,20	-1,12	-1,46	-1,41	0,33	0,18

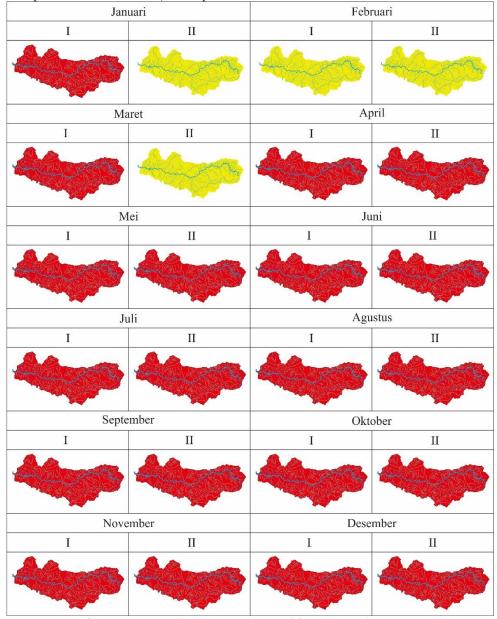
Lanjutan Tabel 5

Neraca Air	Satuan	Sep		Okt		Nov		Des	
		Ι	II	Ι	II	Ι	II	Ι	II
Ketersediaan	m³/detik	0,64	0,50	0,41	0,33	0,67	2,16	3,07	4,76
Kebutuhan	m³/detik	0,56	0,49	0,44	7,34	7,30	3,50	2,95	3,20
Saldo	m³/detik	0,08	0,01	-0,02	-7,01	-6,63	-1,35	0,11	1,56

Tabel 5 menunjukkan saldo air yang terjadi tiap 15 hari pada DAS Tirtomoyo.

Gambar 3 Neraca air DAS Tirtomoyo

Gambar 3 menunjukkan neraca air yang terjadi tiap 15 hari pada DAS Tirtomoyo.


KESIMPULAN

Berdasarkan pada analisis dan pembahasan dapat di ambil kesimpulan sebagai berikut:

- 1. Berdasarkan hasil perhitungan didapatkan nilai ketersediaan air terbesar pada bulan Februari periode 15 harian pertama sebesar 18,0421 m3/detik dan ketersediaan air terkecil pada bulan Oktober periode 15 harian pertama sebesar 0,4149 m3/detik.
 - Berdasarkan hasil perhitungan didapatkan nilai kebutuhan air terbesar pada bulan April periode 15 harian kedua sebesar 16,5492 m3/detik dan ketersediaan air terkecil pada bulan Oktober periode 15 harian pertama 0,4352 m3/detik.
- 2. Prediksi hujan tahun 2018 diperoleh menggunakan *software Minitab 17* untuk memprediksi ketersediaan air yang terjadi, sedangkan kebutuhan air diprediksi dengan memperkirakan pertambahan penduduk yang terjadi pada

tahun 2018. Hasil perhitungan menunjukkan bahwa pada tahun 2018 defisit terbesar terjadi pada bulan April periode 15 harian ke dua sebesar – 8,2848 m³/detik dan surplus terbesar terjadi pada bulan Februari periode 15 harian ke dua sebesar 8,1220 m³/detik. Neraca air yang terjadi juga menunjukkan pada bulan April hingga November kebutuhan air tidak tercukupi hal ini dapat dilihat dari saldo air yang bernilai negatif sehingga perlu adanya pengelolaan air agar dapat meminimalisir dampak negatif dari hal tersebut.

3. Saldo air 15 harian pada tahun 2018 ditunjukkan pada Gambar 4 berikut:

Gambar 4. Prediksi neraca air DAS Tirtomoyo tahun 2018

Gambar 4 adalah prediksi neraca air yang terjadi, warna merah menunjukkan kurang dari 3,2150 m³/detik dan kuning menunjukkan nilai antara 3,2150 m³/detik – 16,0751 m3/detik.

REKOMENDASI

- 1. Pada penelitian ini ketersediaan air hanya dihitung dari air hujan,untuk penelitian selanjutnya, disarankan menambahkan data penggunaan air tanah agar sesuai dengan kebiasaan sehari-hari.
- 2. Pada penelitian ini data statistik berasal dari BPS, pada penelitian selanjutnya disarankan adanya survei lokasi penelitian, seperti tempat-tempat industri dan peternakan yang ada di lokasi penelitian.
- 3. Pada penelitian ini sebagai masukan untuk pemerintah atau pembuat kebijakan dalam pengelolaan waduk adalah dengan mengetahui masa kering dan basah yang ditunjukkan dalam neraca air.

REFERENSI

- Badan Standardisasi Nasiona. Penyusunan Neraca Spacial Sumber Daya Alam Bagian 1: Sumber Daya Air .2015. Jakarta. Badan Standardisasi Nasional.
- Irfani, Alfrida & Suyanto. 2012. Analisis Neraca Air Sungai Tirtomoyo Sub DAS Bengawan Solo Hulu3. Surakarta. Universitas Sebelas Maret.
- Saksono, Lukman Hakim Nugroho., Rintis Hadiani & Setiono. 2013. Prediksi Neraca Air Dengan Metode Perencanaan Bulan Dasar di Daerah Aliran Sungai Tirtomoyo di Kabupaten Wonogiri. Surakarta. Universitas Sebelas Maret.
- Setyosari, Yosephina Puspa., Rintis Hadiani & Suyanto. 2015. Simulasi Hujan Debit Di Daerah Aliran Sungai Bah Bolon Dengan Metode Mock, NRECA dan GR2M. Surakarta. Universitas Sebelas Maret.
- Trisasongko, Bambang H., dkk. 2008. Kajian Spasial Kesetimbangan Air pada Skala DAS (Studi Kasus DAS Bengawan Solo Hulu). Kementrian Negara Lingkungan Hidup Republik Indonesia.
- Wibowo, Cahyo Adi & Rintis Hadiani. 2012. Analisi Neraca Air Faerah Aliran Sungai Bengawan Solo Hulu Sub DAS Bengawan Solo Hulu 3. Surakarta. Universitas Sebelas Maret.