
Erasure Decoding in 2D (1,3)-RLL Constraint

Putranto H. Utomo1, Tri A. Kusmayadi2, Diari Indriati 3, and
Titin S. Martini4

1Depeartment of Mathematics, Faculty of Mathematics and Natural Sciences,
Sebelas Maret University, putranto@staff.uns.ac.id

2tri.atmojo.kusmayadi@staff.uns.ac.id

3diari.indri@staff.uns.ac.id

4 titinsmartini@staff.uns.ac.id

Abstract
In information theory, the run length limited (RLL) constraint is one of the topics that many
researchers have worked on. It has many benefits in designing a code to reduce and correct errors.
The 1D (d,k)-RLL constraint is a binary sequence satisfying the number of a consecutive 0’s is at
most k and the number of consecutive 0’s is at least d. Looking at the trend of the digital era, every
year, there is a significant increase in data produced. Scientists, especially in the field of physics
and computer science, are trying to find the answer to this question: How do we store data in a
more efficient way? Lately, there has been a breakthrough in storing digital data, that is, by means
of holographic recording, which uses the 2D format to store data inside a crystal. Theoretically,
one could store more data per unit square of area. By storing data as a picture (2D format), there
is a possibility that data could be distorted horizontally and vertically. Hence, we need to expand
the theory in 1D constrained sequence to 2D constrained array. In this paper, we analyze the case
of 2D (1,3)-RLL constraint from erasure decoding point of view

Erasure decoding, RLL, error correcting codes

1 Introduction
As one see in [1], the 1D (d,k)-RLL constraint is a binary sequence satisfying

1. There should be at least 𝑑 0’s between 1’s.
2. There should be at most 𝑘 0’s between 1’s.

From the practical point of view, the 1D (d,k)-RLL has benefit to reduce the errors in timing for
storage system, such as magnetic tape, compact disk (CD), digital versatile disk (DVD), and also
hard drive. The theory of 1D (d,k)-RLL constraint has flourist and eveloped very well in the last
decades because there exist mathematical background theory to support the development.
Unfortunately, that is not the case for 2D (d,k)-RLL constraint. It is very difficult to analyze the
two dimension case. What one could do is by analyzing case-by-case.

In this paper we consider one case of 2D (d,k)-RLL cosntraint, that is 2D (1,3)-RLL constraint,
We assume that the 2D array has same number of columns and rows. Hence, we are analyzing the
collection of 𝑛 × 	𝑛 arrays satisfying the following two condition, namely

• The number of 0’s between 1’s is at least 1 in every columns and in every rows.
• The number of 0’s between 1’s is at most 3 in every columns and in every rows

Now, suppose that an erasure has happened, that is some of the element are erased. The process of
reconstructing eresured array is called erasure decoding. We analyze 2D (1,3)-RLL constraint from
erasure decoding point of view.

In particular, we are interested in decoding an erasured array satisfying the 2D (1,3)- RLL
constraint. Ideally we want to find an efficient decoder in solving the problem. Unfortunately, there
are yet exist a polynomial complexity for the decoder. Therefore we use the following three
approach for the decoder, that is brute force approach, SAT solver, and SMT solver.

In the brute force approach, we try to find an array satisfying all the condition/requirement. The
idea is by checking one-by-one arrays in its domain. Clearly that this approach is not efficient and
has exponential growth. The idea of SAT solver in by transforming the problem into satisfiability
problem, that is the problem of finding a solution of a boolean formula written in CNF formula.
The last approach is by transforming the problem in a bit-vector format, using satisfiability modulo
theory (SMT) [3]. Then we use a SMT solver to solve the problem.

2 2D (1,3)-RLL Constraint from erasure coding point of view

Suppose we have an 𝑛 × 𝑛 array satisfying 2D (1,3)-RLL constraint. Next, we send the array over
a noisy channel where it is possible to have some of its elements get erased. At the receiving end,
we want to be able recover the erased elements. The process of recovering the array is called
erasure decoding.

Let us consider the brute force approach. Suppose that we have an 𝑛 × 	𝑛 array where some of its
elements are erased. The idea of this approach is by enumerating all 𝑛	 × 	𝑛 array in 𝐹!"×" and
check whether it satisfy the received erased array.

One could think an improvement for the brute force approach, that is designing back-track search.
This approach is an improvement of brute force approach, that is instead of enumerating all
possible arry in 𝐹!"×"	, we consider guessing each place of the erased element. If there is a
contradiction, we go back to previous step and change the initial guess. This approach has the same
complexity with brute force approach, but it is very memory efficient, since it does not have to
enumerate all the 𝑛	 × 	𝑛 arrays.

Another approach we like to consider is by using SAT solver. This approach require the problem
to be transformed into a logical expression. Hence, each element in the array correspond to a binary
variable. Furthermore, we set the corresponding variable to “true” if the element is equal to one,
and “false” if the element is equal to zero. Recall that there are two constraints regarding the
problem, that is

1. There should be at least one 0’s between 1’s
2. There should be at most three 0’s between 0’s

Let us consider the first constraint. A row or a column will not satisfy the first constraint if there
are 2 consecutive ones. Hence, if 𝑥$ and 𝑥! represent two consecutive cell,

¬(𝑥$ ∧ 𝑥!)

should be true. Now let us consider a vector (𝑥$, 𝑥!, . . . , 𝑥"), then

.[¬(𝑥% ∧ 𝑥%&$)]
"'$

%($

ensure that there are no two consecutive 1’s in that particular vector.

For the second constraint, there should be at most three 0’s between 1’s. Let us consider 4
consecutive cell represented by variables (𝑥$, 𝑥!, 𝑥), 𝑥*) in the array. In order to satisfy the second
constraint, one of the variables should be “1”. Hence the following expression has to be true:

𝑥$ ∨ 𝑥! ∨ 𝑥) ∨ 𝑥*.
Therefore, for a vector of length 𝑛, the corresponding logical expression is

.(𝑥% ∧ 𝑥%&$ ∧ 𝑥%&! ∧ 𝑥%&))
"')

%($

Hence the corresponding logical expression for our problem are

.2.3¬(𝑥%+ ∧ 𝑥(%&$)+)4
"'$

%($

5
"

+($

,

.6.3¬(𝑥%+ ∧ 𝑥%(+&$))4
"'$

+($

7
"

%($

,

.2.3(𝑥%+ ∧ 𝑥(%&$)+ ∧ 𝑥(%&!)+ ∧ 𝑥(%&))+)4
"')

%($

5
"

+($

,

.6.3(𝑥%+ ∧ 𝑥%(+&$) ∧ 𝑥%(+&!) ∧ 𝑥%(+&)))4
"')

+($

7
"

%($

.

The last approach is by SMT Solver. Technically, we could use SMT Solver to solve the boolean
expression constructed in previous section, but previous research stated that it will be much faster
if we use bit-vector representation compared to the boolean expression [2]. In our previous
research, we solve binary puzzle using SMT Solver [4].

3 Conclusion
We conclude that the problem of erasure decoding can be approached my means of satisfiability
(SAT) problem. Using the modern SAT solver and SMT solver, we could solve the NP Complete
problem in a reasonable amount of time.

References
[1] Marcus, Brian H. and Roth, Ron M. and Siegel, Paul H. An Introduction to Coding for

Constrained Systems https://www.math.ubc.ca/~marcus/Handbook/ index.html

[2] Barrett, Clark and Sebastiani, Roberto and Seshia, Sanjit A. and Tinelli, Cesare. Satisfiability
Modulo Theories, Handbook of Satisfiability, chapter 12, pages 737-797, 2008.
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf

[3] Barrett, Clark and Fontaine, Pascal and Tinelli, Cesare. The Satisfiability Modulo Theories
Library (SMT-LIB) www.SMT-LIB.org

[4] Utomo, Putranto. Satisfiability modulo theory and binary puzzle. Journal of Physics:
Conference Series 855(1):012057. 2017.

https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf

