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Abstract. Let G be a connected graph with vertex set V (G) and edge set E(G). The interval I[u; v] 

between u and v to be the collection of all vertices that belong to some shortest u v path. A vertex s 

strongly resolves two vertices u and v if u belongs to a shortest v s path, denoted by u 2 I[v; s] or v 

belongs to a shortest u s path, denoted by v 2 I[u; s]. A vertex set S of G is a strong resolving set of G if 

every two distinct vertices of G are strongly resolved by some vertex of S. The strong metric basis of G 

is a strong resolving set with minimal cardinality. The strong metric dimension sdim(G) of a graph G 

is defined as the cardinality of strong metric basis. In this paper we determine the strong metric 

dimension of a lollipop Lm;n graph and a generalized web W B(G; m; n) graph. Lollipop graph Lm;n is 

the graph obtained by joining a complete graph Km (m 3) to a path graph Pn (n 1) with a bridge. We 

obtain the strong metric dimension of a lollipop graph Lm;n is m 1. Generalized web graph W B(G; m; 

n) is the graph obtained from the generalized pyramid graph P (G; m) by taking p copies of Pn (n 2) 

and merging an end vertex of a diff erent copy of Pn with each vertex of the furthermost copy of G 

from the apex. We obtain the strong metric dimension of generalized web graph with G  
C and without center vertex is m = m 

 
 
 

 
1. Introduction  

Let G be a simple connected undirected graph G = (V; E), where V is a set of vertices, and E is a 

set of edges. The distance between vertices u and v, i.e. the length of a shortest u-v path is denoted by 

d(u; v). A vertex set B={x1; x2; : : : ; xk} of G is a resolving set of G if every two distinct vertices of G 

are resolved by some vertex of B. The metric basis of G is a resolving set with minimal cardinality. 

The metric dimension of G, denoted by dim(G) is the cardinality of its metric basis. 
 

The concept of strong metric dimension was introduced by Seb¨o and Tannier [6] in 2004. Kratica 

et al. [2] defined for two vertices u and v in a connected graph G, if u belongs to a shortest v − s path, 

denoted by u ∈ I[v; s] or v belongs to a shortest u − s path, denoted by v ∈ I[u; s] then a vertex s 

strongly resolves two vertices u and v. A set of vertices S ⊆ V (G) is strong resolving set for G if every 

two distinct vertices u,v ∈ V (G) are strongly resolved by some vertex of S. The strong metric 

dimension of G denoted by sdim(G) is the minimum cardinality over all strong resolving sets of G. 
 

Many researchers have investigated the strong metric dimension to some graph classes. In 2004 

Seb¨o and Tannier [6] observed that the strong metric dimension of complete graph Kn is n-1, cycle 

graph Cn is ⌈
n

2 ⌉, and tree is L(T ) - 1, where L(T ) denotes the number of leaves 
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of tree. In 2013 Yi [8] determined that the strong metric dimension of G is 1 if and only if G = Pn. 

Kusmayadi et al. [3] determined the strong metric dimension of some related wheel graph such as 

sunflower graph, t-fold wheel graph, helm graph, and friendship graph. In this paper, we determine the 

strong metric dimension of a lollipop Lm;n graph and a generalized web W B(G; m; n) graph. 

 

2. Main Result  
2.1. Strong Metric Dimension 

Let G be a connected graph with vertex set V (G), edge set E(G), and S = {s1; s2; : : : ; sk} ⊆ V 

(G). Oelermann and Peters-Fransen [5] defined the interval I[u; v] between u and v to be the collection 

of all vertices that belong to some shortest u − v path. A vertex s ∈ S strongly resolves two vertices u 

and v if u ∈ I[v; s] or v ∈ I[u; s]. A vertex set S of G is a strong resolving set of G if every two distinct 

vertices of G are strongly resolved by some vertex of S. The strong metric basis of G is a strong 

resolving set with minimal cardinality. The strong metric dimension of a graph G is defined as the 

cardinality of strong metric basis denoted by sdim(G). We often make use of the following lemma and 

properties about strong metric dimension given by Kratica et al. [1]. 

 

Lemma 2.1 Let u, v ∈ V(G), u =  v, and 
 

(i) d(w,v) ≤ d(u,v) for each w such that {w,u} ∈ E(G), and  
(ii) d(u,w) ≤ d(u,v) for each w such that {v,w} ∈ E(G). 
 

Then, there does not exist vertex a ∈ V(G), a =   u,v that strongly resolves vertices u and v. 
 

Property 2.1 If S ⊂ V(G) is strong resolving set of graph G, then for every two vertices u,v ∈ V(G) 

satisfying conditions 1 and 2 of Lemma 2:1, obtained u ∈ S or v ∈ S. 
 
We denote diam(G) as the diameter of graph G, i.e. the maximal distance between two vertices in G. 

 

Property 2.2 If S ⊂ V(G) is strong resolving set of graph G, then for every two vertices u; v ∈ V(G) 

satisfying d(u,v) = diam(G), obtained u ∈ S or v ∈ S. 
 

2.2. The Strong Metric Dimension of Lollipop Graph  

Weisstein [7] defined the lollipop graph Lm;n for m ≥ 3, n ≥ 1 as a graph obtained by joining a 

complete graph Km to a path graph Pn with a bridge. The lollipop graph Lm;n can be depicted as in 
Figure 1. 

 
 
 
 
 
 

 
  
 
 
 
 

Figure 1. Lollipop graph Lm;n 
 

 

Lemma 2.2 For every integer m ≥ 3 and n ≥ 1, if S is a strong resolving set of lollipop graph Lm;n 

then | S | ≥ m − 1. 
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Proof. Consider a pair of vertex (vi; un) with i ∈ [1,m-1] satisfying condition d(vi; un) = n+1 = 

diam(Lm;n). According to Property 2.2, we obtain vi ∈ S or un ∈ S, therefore S has at least m − 1 

vertices. Hence | S | ≥ m − 1.  
Lemma 2.3 For every integer m ≥ 3 and n ≥ 1, a set S = {v1; v2; : : : ; vm 1} is a strong resolving set 

of lollipop graph Lm;n. 
 

Proof. For every integer i ∈ [1, m-1] satisfying condition d(un; vi) = n+1 = diam(Lm;n), we obtain 

the shortest un − vi path: un; un 1; un 2; : : : ; u1; vm; vi. So that vi strongly resolves a pair of vertices 

(vm,un). Thus vm ∈ I[un; vi].  
For a pair of vertices (uk; ul) with k =  l, k; l ∈ [1,n-1], without loss of generality k < l we obtain for i ∈ 

[1,m-1], the shortest ul − vi path: ul; ul 1; : : : ; uk; uk 1; : : : ; u1; vm; vi. So that vi strongly resolves a pair 

of vertices (uk; ul). Thus uk ∈ I[ul; vi].  

Therefore S = {v1; v2; : : : ; vm  1} is a strong resolving set of lollipop graph Lm;n. 

Theorem 2.1 Let Lm;n be the lollipop graph with m ≥ 3 and n ≥ 1. Then sdim(Lm;n) = m − 
1. 
 

Proof. By using Lemma 2.3 a set S = {v1; v2; : : : ; vm 1} is a strong resolving set of lollipop graph 

Lm;n with m ≥ 3 and n ≥ 1. According to Lemma 2.2, | S | ≥ m - 1 so that S is a strong metric basis of 

lollipop graph Lm;n. Hence sdim(Lm;n) = m - 1. 

 

2.3. The Strong Metric Dimension of Generalized Web Graph  
Miller et al. [4] defined the generalized web graph W B(G; m; n) for m ≥ 3, n ≥ 2 is the graph obtained 

from the generalized pyramid P (G; m) by taking p copies of Pn (n ≥ 2) and merging an end vertex of 

a diff erent copy of Pn with each vertex of the furthermost copy of G from the apex. 

In this paper we obtain the strong metric dimension of generalized web graph with G 
∼

 C and = m 

without center vertex denoted by W B0(Cm; n). The generalized web graph W B0(Cm; n) can be 
depicted as in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Generalized web graph W B0(Cm; n) 
 

 

Lemma 2.4 For every integer m ≥ 3 and n ≥ 2, if S is a strong resolving set of generalized web graph 

W B0(Cm; n) then | S | ≥ m. 
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Proof. Let S be a strong resolving set of generalized web graph W B0(Cm; n). Suppose that 
 then S < m.  Let V ; V  

⊂ 
V (W B (C  ; n)), with V  

S contains at most m - 1 vertices, n 1  |n 1| 1  2 0  m  1 

= {v1
1
; v2

1
; : : : ; vm

1
; v1

2
; v2

2
; : : : ; vm

2
; : : : ; v1  ; v2 ; : : : ; vm

n
 
1
} and V2 = {v1

n
; v2

n
; : : : ; vm

n
}. Now, we 

define S1 = V1 ∩ S and S2 = V2 ∩ S. Without loss of generality, we may take | S1 | = p, p ≥ 0 and | S2 | 

= q, q > 0. Clearly p + q ≥ m, if not then there are two distinct vertices va and vb where va ∈ V1 \ S1 

and vb ∈ V2 \ S2 such that for every s ∈ S we obtain va ∈= I[vb; s] and vb ∈= I[va; s]. This contradicts 

with the supposition that S is a strong resolving set. Thus | S | ≥ m.  
Lemma 2.5 For every integer m ≥ 3 and n ≥ 2, a set S = {v1

n
; v2

n
; : : : ; vm

n
} is a strong resolving set 

of generalized web graph W B0(Cm; n). 
 
                s  t       

)) 
 

S with k; l 
 

Proof. We prove that for every two distinct vertices vk; vl ∈ V (W B0(Cm; n \ ∈ 
 s  t    

[1, m] and s; t ∈ [1, n-1], there exists a vertex s ∈ S which strongly resolves vk and vl . There 
are three possible pairs of vertices.                           

(i) A pair of vertices (vk
s
; vl

t
) with k; l ∈ [1, m], k  = l and s; t ∈ [1, n-1], s = t.        

            loss of generality  1  

≤ 
k < l  

≤ 
m, we obtain the  

 For every integer k; l ∈ [1, m] without t+1   n 1                 

 shortest vk
t 
− vl

n
 path: vk

t
; vk

t 
+1; : : : ; vl

t
; vl  ; : : : ; vl  ; vl

n
, and shortest vl

t
 − vk

n
 path:vl

t
; vl

t
  1; 

 : : : ; vk
t
; vk

t+1
; : : : ; vk

n
  

1
; vk

n
. So that vl

t
 ∈ I[vk

t
; vl

n
] and vk

t 
∈ I[vl

t
; vk

n
].            

(ii) A pair of vertices (vk
s
; vl

t
) with k; l ∈ [1, m], k = l and s; t ∈ [1, n-1], s  = t.        

        n-1] without  loss  of generality  1 

≤ 
s < t  

≤ 
n-1, we obtain the  

 For every integer s; t ∈ [1, s+1   t+1  n   1               

 shortest vk
t 
− vk

n
 path: vk

s
; vk ; : : : ; vk

t 
; vk  ; : : : ; vk  ; vk

n
. So that vk

t 
∈ I[vk

s
; vk

n
].     

(iii) A pair of vertices (vk
s
; vl

t
) with k; l ∈ [1, m], k  = l and s; t ∈ [1, n-1], s  = t.        

 For every integer k; l ∈ [1, m] and s; t ∈ [1, n-1] without loss of generality 1 ≤ k < l   m 
                    s+1        n  

≤ 
 

 and 1 ≤ s < t ≤ n-1, we obtain the shortest v
s 

vn path: v
s 
; v   ; : : : ; v

t  ; v
t
; : : : ; v  1 ; v

n 
 k    

            k 

− l     k    l  1  l   l   l 

 or vk
s
; vk

s 
+1; : : : ; vl

t
  

1
; vl

t
; : : : ; vl

n
  

1
; vl

n
. So that vl

t 
∈ I[vk

s
; vl

n
].                

From every possible pairs of vertices, there exists a vertex vl
n
 ∈ S with l ∈ [1, m] which strongly 

resolves vk
s
,vl

t
 ∈ V (W B0(Cm; n)) \ S. Thus S is a strong resolving set of generalized web graph 

W B0(Cm; n). 
 

Theorem 2.2 Let W B0(Cm; n) be the generalized web graph with m ≥ 3 and n ≥ 2. Then sdim(W 

B0(Cm; n)) = m. 
 

Proof. By using Lemma 2.5, we have a set S = {v1
n
; v2

n
; : : : ; vm

n
} is a strong resolving set of W 

B0(Cm; n) graph. According to Lemma 2.4, | S | ≥ m so that S = {v1
n
; v2

n
; : : : ; vm

n
} is a strong 

metric basis of W B0(Cm; n). Hence sdim(W B0(Cm; n)) = m. 

 

3. Conclusion  
According to the discussion above it can be concluded that the strong metric dimension of a 

lollipop graph Lm;n and a generalized web graph W B0(Cm; n) are as stated in Theorem 2.1 and 
Theorem 2.2, respectively. 
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