Accredited by Directorate General of Higher Education, Research, and Technology No. 152/E/KPT/2023

Review Article Experimental animal models for polycystic ovarian syndrome (methods, effects, and implications)

Erna Yovi Kurniawati^{1,*}, Noor Pramono², Syarief Thaufik Hidayat², and Endang Mahati³

¹ Doctoral Program Medical and Health Sciences, Diponegoro University, Semarang, 50275, Indonesia ² Departement of Fertility and Endocrinology, Medical Faculty, Diponegoro University, Semarang, 50275, Indonesia

³ Departement of Pharmacology and Therapy, Medical Faculty, Diponegoro University, Semarang, 50275, Indonesia

*Correspondence: yovi.raharjanto@gmail.com

Received: September 29th, 2023; Accepted: January 19th, 2024; Published online: March 15th, 2024

Abstract

Many studies have replicated the clinical and genetic features of polycystic ovarian syndrome (PCOS) using a range of experimental animal models to improve treatment outcomes. This article aims to present an overview of the various experimental animal models that have been used in PCOS research. In this study, we conducted a systematic review of relevant research articles on the induced animal model PCOS. We searched research articles in Indonesian and English published over the last five years through three databases: PubMed, ScienceDirect, Google Scholar. We use established inclusion and exclusion criteria to select suitable articles. Out of 19 research articles included in our systematic review, we found the animal model PCOS based Rotterdam criteria, PCOS-IR model, PCOS-Inflammation model, PCOS-Gut microbiota model and PCOS-syndrome metabolic model. Androgen agents such as testosterone propionate, free testosterone, DHEA, and letrozole, as well as sodium valproate, are effective in the induction of PCOS phenotypes based on the Rotterdam criteria (oligo/amenorrhea, hyperandrogenic, and polycystic ovaries).

Keywords: Animal model; Induced methods; Polycystic ovarian syndrome

INTRODUCTION

Polycystic ovarian syndrome (PCOS) is an endocrine disorder that can cause infertility in women, for which the specific etiology of the therapy for PCOS is currently unknown. PCOS is characterized by a combination of various symptoms, including hormonal disruption, ovulation disorders, hyperandrogenism, and insulin resistance [1]. This condition not only causes reproductive problems and the output of pregnancy but also increases the risk of long-term health complications, such as type 2 diabetes, heart disease, and other metabolic problems, as well as psychological disorders and quality of life [2–4]. To understand the pathophysiology of PCOS and develop more effective therapies, many studies have used a variety of experimental animal models to replicate the clinical and molecular characteristics of the disease. This approach provides valuable insights into the underlying mechanisms behind the development and progression of this polycystic ovarian syndrome.

This article aims to present an overview of the various experimental animal models that have been used in PCOS research This article analyzes the various animal species that have been used as PCOS induction models, as well as the clinical and molecular aspects that have been successfully replicated in each model. It also discusses the results of studies using these models and their relevance for understanding human PCOS.

A better understanding of the biological mechanisms underlying PCOS through experimental animal modelling approaches can enhance efforts to develop more targeted and effective therapies to address the complex problems associated with this syndrome. It should be noted that although experimental animal models can provide valuable insights, there are also limitations and differences to be considered when interpreting the findings of this review in a human context; therefore, integrating data from animal models with human clinical data will be a critical step towards a comprehensive understanding of PCOS and its treatment. This article can be used as a useful reference for researchers and medical professionals interested in deepening their understanding of PCOS and developing more effective therapies to address the health challenges it poses.

MATERIALS AND METHODS

Research articles were searched using three databases, PubMed, ScienceDirect, Google Scholar in five years of publication (2019- 2023) that written in Indonesian and English. The keywords used in the article search have been matched to Medical Subject Titles (MeSH) including "PCOS model", "Animal Model", "PCOS (t/n: SOPK)", "Polycystic Ovary Syndrome (t/n: Sindrom Ovarium Polikistik)", "Hyperandrogenism", "Insulin Resistance", "Ovarian Dysfunction", "Induction", according to PICOTs

Table 1. Inclusion and exclusion criteria

(Population, Intervention, Comparators, Outcome, Time), see Table 1.

Guidelines for evaluating the quality of the study are Joanna Briggs (JBI) Critical Assessment and PRISMA guidelines (see Figure 1). Literature from the search results was checked for indications of duplication. Literature that did not have duplicates was then screened in two stages. The first stage of selection was carried out by determining the suitability of the title and abstract with the predetermined inclusion criteria. Literature that had passed the first stage of selection was selected again by analyzing the correspondence between the journal content and the predetermined inclusion criteria (Table 1). This literature selection was carried out by both reviewers to obtain accurate results and minimize errors. Risk of Bias (Figure 2 and 3) identified use Rob 2 by Revman 5.41 software[5,6].

RESULTS

Nineteen research articles were included studies. Table 2 summaries of each in this article in a systematic review of PCOS animal model induction consists of methods, effects, and implications. The induction methods, doses, duration, and PCOS phenotypes observed in the experimental models are presented in Table 3. Several induction methods, such as prenatal administration of Testosterone Propionate and Free Testosterone, successfully explored PCOS phenotypes including oligo-anovulation, hyperandrogenism, and polycystic ovaries[7-9]. DHEA and Letrozole are also effective in exploring various aspects of PCOS, including inflammation, hyperlipidemia, and insulin resistance [10-20].

Criteria	Inclusion	Exclusion
Population	Mus musculus, rats, mice, murine, sheep	In vitro
Intermention	PCOS model induction using various methods	Not focusing on PCOS model
intervention	(hormone, diet, drug, genetic manipulation)	induction
Comparators	With or without control group	-
	Study that relevant results related to PCOS	Studies that do not provide
Outcomes	phenotypes on models	sufficient information to be
		evaluated
Time	Within the past five years (2019-2023)	More than the past five years (>
Time		2019)
Study design	Experimental research	Analytical observational
		research
Language	Indonesian, English	Besides Indonesian and English

Figure 1. PRISMA Flow diagram of eligible studies

Figure 2. Risk Bias Graph of eligible studies

Figure 3. Risk Bias Summary of eligible studies

Author	Sampla	Measured/	Intervention	Dogult	Effecte
Autior	Sample	Parameter	(type, Dose, Duration)	Kesuit	Effects
Ding et al., 2019	Female Sprague-Dawley	HOMA IR	Control: (n=10) normal	Significantly increased T, LH, LH/FSH,	Vaginal keratosis
[25]	(3 weeks old, 230-250g)	(FPG, FINS)	diet+injection olive oil 0.05 ml	FIN and HOMA-IR levels	Abnormal Estrus
	Total: 30 (3 groups)	Testosterone	PCOS-IR: (n=10) 100 μg	PCOS-IR rats exhibited higher levels of	cycle
		Lactate	testosterone propionate	cyto c and Bax and a higher ratio of Bax	Insulin resistance
		dehydrogenase	dissolved in 0.05 ml corn oil	to Bcl-2, whereas the level of Bcl-xL was	Hyperandrogenic
		(LH)	subcutant injection + High fat	decreased.	Inflammatory
		FSH	Diet (54.2% standard diet,	The rats in the PCOS-IR group had	Polycystic ovary
		Histopathology	16.8% lard, 15%	higher MDA levels and lower T-AOC,	
		MDA	sucrose, 9% casein, 1%	SOD and GSH levels, suggesting	
		T-AOC, SOD, GSH	minerals, 1% vitamins and 3%	increased OS in PCOS-IR	
			malt		
			dextrin)		
			Duration: 8 W		
Decourt et.al.,	Female mice C57BL/6J	Testosterone	Control: placebo	LET treatment had a significantly higher	Polycystic ovary
2023[15]	(26 day of age)	Histology	LET: subcutaneous implant	plasma concentration of testosterone at	Weight gain
	Total: 20 (2 groups)	Body weight	letrozole 4.5 mg	50 days.	Abnormal Estrus
		Insulin	Duration: 90 day	LET were in constant diestrus.	cycle
				LET mice presented haemorrhagic	Insulin Resistance
				follicles in addition to cystic follicles.	Hyperandrogenic

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

	Measured/	Intervention	D1		
Autnor	Sample	Parameter	(type, Dose, Duration)	Kesult	Effects
				LET treatment were significantly heavy	Irregular cycles
				LET was significantly smaller compared	and ovulatory
				to control mice, indicating insulin	disruption
				resistance.	
				The number of cystic follicles per ovary	
				was significantly higher in LET mice	
Sadeghian Bhahi	Pregnant Wistar rats	Estrous cycle	PCOS rats: (n=10) 5 mg free	Prenatal exposure can develop PCOS in	Polycystic ovary
et al., 2023 [9]	(170-190 g, 75-85 days of	Histology	testosterone dissolved in a 500	prenatal androgenizing mice in	Estrus cycle
	age)	Testosterone	µl sesame oil & benzyl	adulthood.	disorder
	Total: 20 (2 groups)	Body Weight	benzoate in a 4:1 ratio (s.c)	The group given testosterone	Hyperandrogenic
			Control: (n=10) vehicle 500 µl	experienced significant weight gain,	Weight again
			solvent simultaneously (s.c)	have morphological changes that	
			Time: 20th day of pregnancy	resemble male characteristics, such as	
			period	increased lengths of anogenital distance	
				(AGD) and anovaginal distance (AVD).	
Palmerini et al.,	Female CD-1 mice (4w	Estrous cycle	DHEA group (n=10): daily	DHEA mice showed abnormal estrous	Abnormal Estrus
2023 [11]	old, 20-21g)	Histology (morpho-	subcutaneous injection of	cyclicity	cycle
	Total: 40 (4 groups)	functional &	DHEA (6 mg/100g BW) +	DHEA group, the endometrium	Glandular
	female offspring of PNA	molecular	sesame oil 100 μl with 10% of	appeared hyperplastic and thicker. the	Epithelial
		alterations uterus)	95% ethanol	luminal epithelium thickness increased	Proliferation

Author	Sampla	Measured/	Intervention	Descrit	Effecto	
Author	Sample	Parameter	(type, Dose, Duration)	Kesuit	Effects	
			3hr after testosterone inj-	and was invaginated in the underlying	Luminal and	
			received 200 µl phosphate	stroma, which showed lower cellularity.	glandular	
			buffered saline (PBS)	Increased presence of inflammatory	epithelial	
			Vehicle control group (n=10):	cells (eosinophils, lymphocytes, and	hyperplasia	
			injected 0.09 ml sesame oil +	macrophages)	MG-AGE	
			0.01 ml 95% ethanol daily	The LC3II/LC3I ratio decreased	accumulation	
			Time: 20 days	significantly, p62 increased, indicating		
				the decreased level of autophagy.		
				17 β-HSD4 expression increased		
				expression in all the endometrial		
				compartments, but also in the		
				myometrium.		
				The increased immunostaining for 4-		
				HNE in the luminal and glandular		
				endometrial epithelium, as well as in the		
				myometrium.		
				SIRT1 expression increased, SOD2		
				protein was significantly upregulated		
Ryu et al., 2023	Female mice C57BL/6N	LH pulse	Chow Group: LET group, Con,	Hyperactive pulsatile LH secretion	Hyperandrogenic	
[16]	(3w old age)	Testosterone	LET-TRF	pattern	Polycystic ovary	

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

Author	Sampla	Measured/ Intervention		Pocult	Efforto
Aution	Sample	Parameter	(type, Dose, Duration)	Kesuit	Lifeets
	Total: 60 (6 group)	Oestradiol	HF Group (60% high-fat): LET-	LET mice had increased T levels,	Inflammation
		Body Weight	HF, Con-HF, LET-TRF HF	mirroring hyperandrogenaemia, E2	Abnormal Estrus
		Estrus cycle	Letrozole dose of 50 µg per day	levels were not different	cycle
		Histology	through subcutaneous implant	LET mice showed a more rapid initial	
			installation (4 w age)	weight gain from 6 to 8 weeks of age	
			Time: 60 days	The average adipocyte size of the LET	
				mice was higher. Macrophage	
				infiltration in adipose tissue sections	
				appeared with higher frequency in LET	
				mice	
				Levels of inflammatory markers in	
				adipocyte tissues, including interleukin	
				1 alpha (IL-1 α), C–C Motif Chemokine	
				Ligand 2 (CCL2), tumour necrosis factor	
				alpha (TNF- α), and CD11c, were higher	
				in LET and LET-TRF mice	
				The ovaries of LET mice showed an	
				enlarged polycystic morphology and a	
				higher number of cystic follicles	

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

A suth an Car	Compatib	Measured/	Intervention	Decili	Effecto
Autnor	Sample	Parameter	(type, Dose, Duration)	Kesult	Effects
				Rev-erb α decreased markedly in LET	
				mice, Bmal1 expression was higher in	
				LET , GLUT-4, a marker for insulin	
				responsiveness decreased in LET mice ,	
				Kiss1r, Gnrh, and Pgr, were increased in	
				LET mice	
Ullah et al., 2022	Female mice C57BL/6J	Insulin	DHEA Group: 6 mg/100 g of	Significantly higher serum insulin	Hyperandrogenic
[10]	Total: 55 (2 group)	LH	weight, dissolved in 0.1 ml of	levels, higher levels of serum LH, no	Abnormal estrous
		FSH	ricin oil (subcutaneous	significant difference in serum FSH	cycle
		Testosterone	injection) + high-fat diet (HFD)	levels, significantly higher serum	Cystic follicle
		Progesterone	with 60% calorie fat. This high-	testosterone levels, lower levels of	Weight again
		Histology	fat diet has 5.24 kcal/g, with	serum progesterone. Ovaries	Insulin Resistance
		Body weight	20% protein (26 g%), 20%	significantly lower numbers of corpora	
			carbohydrate (26 g%) and 60%	lutea, follicular dysplasia and ovulation	
			fat (35 g%)	disorder, and significantly higher	
			Time: 20 day	numbers of atretic and cystic.	
Ibrahim et al., [17]	Female albino Wistar	FBG	Control (2 group): 1% carboxy	The body weight of the PCOS-induced	Inflammation
	rats	Histology	methylcellulose	rats was higher, higher ovarian weights	Insulin Resistance
	Total: 36 (6 group)	Lipid Profile	PCOS (4 group): Letrozole oral	cystic follicles predominated in the	Polycystic ovary
		(TC, HDL, TGs)	dose of 1 mg/kg	ovarian structure, with a limited	Hyperandrogenic

Author	Sample	Measured/	Intervention	Rocult	Efforts
Aution	Sample	Parameter	(type, Dose, Duration)	Result	Effects
		Inflammation profil	Time: 21 days	number of growing follicles and corpus	
		(IL-1β, IL-6, TNFα)		lutea.	
		Antioxidant (MDA,		significantly higher FBG, higher serum	
		NO, SOD, CAT)		insulin and HOMA/IR levels	
				serum LH level was reported to be	
				higher, testosterone level was	
				significantly raised by letrozole (by	
				134%)	
				The cholesterol and triglyceride	
				concentrations were two-fold higher,	
				lower HDL level	
				Lower SOD activity level, lower catalase	
				activity, higher MDA level, total nitrite	
				level was significantly higher, higher	
				level of total nitrite	
				The protein level of the inflammatory	
				cytokines IL-1 β in ovarian tissues and	
				IL-1 β , IL- 6, and TNF- α higher in the	
				serum	

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

A set la ser	Comula	Measured/	Intervention	Descrit	Effecto
Author	Sample	Parameter	(type, Dose, Duration)	Kesut	Effects
Wang et al., 2022	Female C57BL/6J mice (6	TC, LDL-C	Control group: normal diet	The DHEA and DHEA + HFD groups	Hyperandrogenic
[13]	weeks old)	Testosterone	and injected daily with sesame	stayed in the dioestrus stage, serum T	Insulin resistance
	Total: 40 (4 group)	FBG, FINS	oil.	levels were significantly higher	Estrus disorder
		Estrus cycle	HFD group: (60% of energy	Significantly increased TC and LDL-C	Ovary polycystic
		Histology	provided by fat)	levels	Dysbiosis Gut
		Microbiota	DHEA group: subcutaneous	Bifidobacterium and Lactobacillus, was	microbiota
			injection of DHEA (6 mg/100 g	significantly increased in the DHEA and	Metabolic disorder
			of body weight) dissolved in	DHEA+HFD groups.	
			0.1 mL of sesame oil	contained several antral follicles and no	
			DHEA+HFD group	CL DHEA+HFD group showed	
			Time: 5 weeks	extremely heterogeneous	
				hyperinsulinemia and IR	
				Hyperinsulinemia and insulin	
				resistance in the DHEA group	
Marshall <i>et al.</i> ,	Adult female mice	NID ARN	VEH control: 100 µL of sesame	PNA mice were acyclic, spending the	Estrus cycle
2020 [22]		NPY	oil	majority of time in persistent diestrus	disorder
	Vaginal cytology	PNA: 250 µg of di-hydro	ARN was significantly elevated in PNA	Hyperandrogenic	
			testosterone (DHT)	mice. PR-ir was less abundant and less	Androgen receptor
			Time: days 16, 17, and 18 of	intense in PNA . The co-expression of	↑
			pregnancy		

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

Author	Comple	Measured/	Intervention	Decell	Effect.
Autnor	Sample	Parameter	(type, Dose, Duration)	Kesult	Effects
				ERα within NPYARN neurons	Progesterone
				extremely limited in PNA	receptor, estrogen
					receptor alpha \downarrow
Wang <i>et al.</i> , 2020	Female Sprague-	FPG, FINS	PCOS group: letrozole (1	Letrozole combined with a high-fat diet	Insulin resistance
[20]	Dawley rats (6 to 8	LH/ FSH	mg/kg/day) + HFD	for 21, 24, 27, and 30 days resulted in	Hyperandrogenic
	weeks old)	Triglycerides	Control group: 0.5% carboxy-	body weight and Lee's index of the rats	Polycystic ovaries
	Total: 48 (2 group)	Testosterone	methylcellulose (CMC)-Na (1	in each model group to be significantly	Metabolic disorder
		Triglyceride	mL/100 g/day)	in- creased.	
		Body weight	HFD: 20% protein, 20%	ovarian volume of the rats was	
		Histology	carbohydrate, and 60% fat	significantly increased, hawed	
			Normal diet: 3.85 Kal/g,	polycystic changes and the number of	
			protein 20%, carbohydrate	follicles increased significantly	
			70%, fat 10%	the levels of LH/FSH, testosterone, and	
			Time: 30 days.	TG were significantly increased	
				levels of FINS and HOMA-IR were	
				significantly in- creased	
Chu et al., 2020 [8]	Sprague-Dawley (SD)	АМН	The control group was under a	The phenotype induced by light	Estrus cycle
	females (200-220 gr,	Insulin	periodic cycle (12-h/12-h	exposure in SD rats included estrous	disorder
	aged 6 weeks)	Intestinal	light/dark cycle, L/D group)	cycle disorder, oligo/anovulation,	Insulin resistant
	Total: 22 mice (2 group)	microbiota	while the light group was	ovulation dysfunction, elevated AMH	Oligo/Anovulation

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

Author Sample	Measured/	Intervention	Descrit	Effecte	
Author	Sample	Parameter	(type, Dose, Duration)	Result	Effects
		Histology	exposed to continuous light	level, glucose metabolic abnormality,	Gut microbiota
			(12-h/12-h light/light cycle, L/L	abnormal gut profile resembling	
			group) for four consecutive	metabolic disorder, Gut microbiota	
			weeks	profile shaped by continuous light	
				exposure could be in close relevance	
				with endocrine disturbance and glucose	
				intolerance in PCOS.	
Esparza <i>et al.,</i>	Female C57BL/6 mice	Vaginal smear	LET group: LET (letrozole) of	Circulating T was significantly	Abnormal estrous
2020 [19]	Total: 16 mice	GnRH/LH pulse	50 μg/day (age of 4w)	upregulated in LET females, BWs were	cycle
		Testosterone	subcutaneous implantation.	also greater at both 3 and 5 weeks post-	LH hypersecretion
		Oestradiol	CON group: placebo	LET, serum E2 levels higher in control	Neuroendocrine
			Time: 60 days	than in LET females	disorders
				LH for the entire sampling period was	Hyperandrogenic
				significantly higher, by 4-fold, in LET	
				Kiss1 and Tac2 gene expression in the	
				ARC were strongly upregulated in the	
				LET condition, suggestive of a higher	
				capacity for these ARC cells to make	
				kisspeptin and NKB	

Anthon	Convelo	Measured/	Intervention	Decult	Effecto
Author	Sample	Parameter	(type, Dose, Duration)	Kesult	Effects
Linares <i>et al.,</i> 2019	Female CIIZ-V strain	Oestradiol	EV group: 2 mg EV (oestradiol	The group induced with EV had higher	Hyperandrogenic
[23]	rats	Testosterone	valerate) dissolved in 0.1 ml of	concentrations of oestradiol,	Polycystic ovaries
	Total: 100 (2group)	Progesterone	corn oil	testosterone, progesterone in the serum.	
		Noradrenalin	Control group: VH (vehicle)	In the EV control group, the ovaries	
		Histology	0.1 ml of corn oil.	showed polycystic follicles and no	
			Time: 76 days	corpus luteum.	
Porter et al., 2019	Suffolk sheep	GABAergic	PCOS group (n=7): injected 100	There was a significant decrease in the	GnRH/LH pulse
[7]	Total: 15 (2 group)	synaptic inputs on	mg testosterone propionate in	number of GABAergic synapses on	frequency
		GnRH and KNDy	cottonseed oil	GnRH neurons in the preoptic area	
		neurons	Control (n=8): untreated	(POA) and the medio basal	
			Time: 2 weeks (30-90 day	hypothalamus (MBH), as well as a	
			gestation, of a 147 days	significant increase in the amount of	
			pregnancy)	GABAergic input on KNDy neurons.	
Sudhakar et al.,	Wistar albino (12-18	Estrus cycle	Group I: letrozole 400	Significant weight gain occurred after 21	Hyperandrogenic
2019 [18]	weeks age, 180-230	FPG	μg/kg/day	days in all groups, higher difference in	Polycystic ovaries
	gram)	Lipid profile	Group II: Diazepam 4	BW group I (32.8g). Abnormal changes	Hyperglycaemia
	Total: 24 (4 group, n=6)	Testosterone	mg/kg/day	in the estrus cycle with the dominance	Glucose
		Estrogen	Group III: Sodium valproate	of the diestrous phase. Hyperglycaemia	intolerance
		Progesterone	300 mg/kg/day	and glucose intolerance higher in group	Hyperlipidaemia
		Body weight		I and III. High testosterone, lower	Weight again

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

Author Sample	Measured/	Intervention	Descrit	Effecto	
Author	Sample	Parameter	(type, Dose, Duration)	Kesuit	Effects
		Ovary weight	Group IV: carbamazepine 50	progesterone group IV-III-I. High	Abnormal estrous
		Histology	mg/kg/day	estrogen in group III-IV-I. There was a	cycle
			Time: 35 day	decrease in HDL levels and an increase	
				in LDL and VLDL levels in all groups,	
				lipid profiles most influential in groups	
				I and III. Ovary weight higher in group	
				I-IV-III. Increased size, thickened	
				capsule, cystic graafian follicle, follicle	
				cyst in group all group except diazepam	
				group. Reduction of corpus luteum,	
				changes in the granulose cells and an	
				increase in the number of atretic follicles	
				in group I, III and IV, the numbers of	
				cysts are higher in sodium valproate	
				and carbamazepine group. sodium	
				valproate induced PCOS in similar to	
				the human PCOS with the same	
				metabolic and reproductive	
				characteristic features.	

Author	Sample	Measured/	Intervention	Dogult.	Effects
Aumor		Parameter	(type, Dose, Duration)	Result	
Asghari <i>et al.,</i>	Balb/c female mice	LH	PCOS group (n=10):	The PCOS group of mice showed	Decrease follicle
2021 [24]	$(20.0 \pm 1.5 \text{ g}, 8 \text{ weeks old})$	FSH	intramuscular injections of	weight loss, a lower number of preantral	Cystic follicle
	Total: 20 mice (2 group)	Progesterone	oestradiol valerate (EV) 0.2 mL	and antral follicles, as well as lower	Abnormal estrous
		Oestradiol	of EV dissolved in normal	levels of oestradiol, luteinizing	cycle
		Testosterone	saline	hormone, testosterone, and follicle-	
		Estrous cycle	Control (n=10): injection of	stimulating hormone. In addition, there	
		Gene expression	sesame oil (0.1 mL)	was a decrease in the expression of the	
		Histology	Time: 56 days	genes TGFB1, GDF9, and BMPR2 in the	
		Body weight		preantral follicle. However, levels of the	
				hormone progesterone in mice with	
				PCOS were higher than in the control	
				group.	
Dos Santos et al.,	Corriedale sheep (3-5	Estrous cycle	Control group (n=24): no	PA sheep became heavier compared to	Insulin resistance
2018 [21]	years age), multiparous,	Glucose tolerance	intervention	controls from 8 to 12 months of age. PA	Abnormal estrous
	good nutrition	Insulin	Androgen group (n=22):	female lambs had a significantly	cycle
	Total: 46 (2 group) Pr		Androgenol, 100 mg IM	increased anogenital distance compared	Hyperandrogenic
		Testosterone	Time: biweekly to pregnant	to female controls. PA sheep showed a	
		Androstenedione	ewes during days 30 to 90 of	disruption of the ovarian cycle,	
		Gene expression	gestation (26–28)	characterized by the absence of a	
				sustained elevation in serum	

Table 2. List of research articles for experimental animal models for polycystic ovarian syndrome

Author	Sample	Measured/	Intervention	Descrit	Effects
Author		Parameter	(type, Dose, Duration)	Kesuit	
				progesterone. PA androgenized female	
				sheep showed evidence of insulin	
				resistance, as defined by a higher insulin	
				to glucose ratio at +15 minutes during an	
				intravenous glucose tolerance test.	
				Significant increase in testosterone	
				levels at 12 months of age in the	
				prenatally androgenized (PA) group, no	
				significant increase in androstenedione.	
				no significant difference in gene	
				expression	
Kim <i>et al.</i> , 2018	Sprague Dawley (21-	Body weight	Pre pubertal (n=56)	In pre-puberty rat models, only 33% of	Weight gain
[12]	day-old and 42-day-old)	Histology	Post pubertal (n=109)	rats experienced significant weight gain	Abnormal estrous
		Vaginal smears	DHEA group: subcutaneously	after DHEA injections. Furthermore,	cycle
		(estrous cycle)	injected daily with DHEA (60	about 72% of rats in the PCOS group	Polycystic ovary
			mg/kg BW dissolved in 0.2 mL	showed an irregular estrus cycle. 50% of	
			sesame oil)	PCOS rats showed a significant increase	
			Sham group: sesame oil	in ovarian weight, increased ratio of rats	
			without DHEA	with irregular	
			Time: 20 day		

Author	Sample	Measured/	Intervention	Descript	Effects
Autnor		Parameter	(type, Dose, Duration)	Kesult	
				estrus cycles (66.7-100%) and multi-	
				cystic ovaries (75–100%).	
Zhou et al., 2018	Female Sprague-Dawley	Insulin	Control: SC 0.2 mL castor oil	The weight gain in rats of the PCOS plus	Hyperandrogenic
[14]	rats (21 day old)	Testosterone	PCOS: 6 mg/100 g body weight	HFD group was significantly higher.	Insulin resistance
		LH	dissolved in 0.2 mL	The serum testosterone (T), fasting	Polycystic ovary
		FSH	castor oil	blood insulin (FIN), FSH, LH/ FSH ratio,	Weight gain
		Oestradiol	PCOS+HFD: SC DHEA+ HFD	and HOMA-IR index were significantly	
		Body weight	(protein 25% and lipids	elevated in the PCOS group and the	
		Histology	15%)	PCOS plus HFD. The levels of LH and	
			Time: 21 day	fasting blood glucose (FBG) in the PCOS	
				plus HFD group were slightly higher	
				than those in the PCOS group. The	
				number of follicular cysts in the PCOS	
				group and the PCOS plus HFD group	
				was greater than that in the control	
				group, and the ratio of follicular cysts to	
				normal follicles was significantly	
				increased.	

Table 3. Induction method, dose, duration, and phenotype of PCOS

	_		PCOS Phenotype (Rotterdam Criteria)				
Induction Method	Dose	Duration	Oligo- Anovulation	Hyper- androgenic	Ovary Polycystic	- Another PCOS effect	
Testesterer e Prezierete	100	9 l.o	Yes	Yes	Yes	Insulin resistance	
restosterone r ropionate	100 µg + HFD	o weeks				Inflammation (MDA)	
	100 mg	30–90-day gestation	-	-	-	Increased GnRH/LH pulse	
	-					frequency	
Free Testosterone	5 mg	Prenatal day 20	Yes	Yes	Yes	Weight again	
Androgenol	100 mg	Prenatal day 30-90 (biweekly)	Yes	Yes	-	Insulin resistance	
DHT (Dihydrotestosterone)	225 μg	Prenatal day 16-17-18	Yes	Yes	-	AR [↑] , PR & ER $\alpha \downarrow$	
· · · · · · · · · · · · · · · · · · ·	6 mg/ 100 g BW	20 days	Yes	Yes	Yes	Inflammation (eosinophils,	
DHEA						lymphocytes, and	
(Dehydroepiandrosterone)						macrophages)	
						Endometrium hyperplasia	
		21 days	-	Yes	Yes	Insulin resistance	
		5 weeks	Yes	Yes	Yes	Gut microbiota	
	60 mg/kg BW	20 days	Yes	-	Yes	Weight again	
	6 mg/ 100 g BW + HFD	20 days	Yes	Yes	Yes	Insulin resistance	
						Weight again	
		21 days	-	Yes	Yes	Insulin resistance	
						Weight again	
		5 weeks	Yes	Yes	Yes	Gut microbiota	
						Glucose intolerant	
Laturala	4.5 mg	90 days	Yes	Yes	Yes	IR	
Letrozole	-					Weight again	
	50 µg	60 days	Yes	Yes	Yes	Inflammation (TNF α , IL-	
						1α)	
						LH hypersecretion	
						Neuroendocrine disorder	

		Duration	PCOS Phenotype			
Induction Mathad	Dose		(Rotterdam Criteria)			
mauction Method			Oligo-	Hyper-	Ovary	Another r CO3 effect
			Anovulation	androgenic	Polycystic	
	1 mg/ kg BW	21 days	-	Yes	Yes	Insulin resistance
						Inflammation (IL-1 β , IL- 6,
						and TNF- α)
	1 mg/ kg BW + HFD	30 days	-	Yes	Yes	Insulin resistance
						Metabolic disorder
	400 μg/kg/day	35 days	Yes	Yes	Yes	Glucose intolerance
						Hyperlipidemia
						Weight again
Estradiol Valerate	2 mg	76 days	-	Yes	Yes	-
	0.2 ml	56 days	Yes	No	Yes	-
HFD	60% of energy provided	5 weeks	No	Yes	No	Bacteroides and Alistipes
	by fat					Glucose intolerant
Light pariodic cyclo	12h/ 12h light/light	4 weeks	Yes	No	Yes	Insulin resistance
Light periodic cycle						Gut microbiota
Diazonam	4 mg/kg/day	35 days	Yes	Yes	No	Glucose intolerance
Diazepain						Weight again
	300 mg/kg/day	35 days	Yes	Yes	Yes	Hyperlipidemia
Sodium valproate						Glucose intolerance
						Weight again
Carbamazonino	50 mg/kg/day	35 days	Yes	Yes	Yes	Glucose intolerance
Carbamazepille						Weight again

Table 3. Induction method, dose, duration, and phenotype of PCOS

However, some induction methods such as the use of Diazepam or Sodium Valproate show an incomplete PCOS phenotype, not covering all PCOS characteristics such as hyperandrogenism or polycystic ovaries[18]. In addition, some doses and durations of induction elicit a milder PCOS phenotype, as seen with a dose of 0.2 ml Estradiol Valerate for 56 days. Therefore, interpretation of the results should be done with caution, and selection of an appropriate induction method is key to achieving an accurate representation of the PCOS phenotype in experimental models[18].

Testosterone Propionate

Testosterone propionate is a synthetic form of testosterone that is exogenously administered and given from outside the body an experimental animal. of Increased testosterone levels are one of the main characteristics of PCOS in humans. Sheep induced with testosterone propionate reproductive disorders experience like women with PCOS, including increased frequency of the luteinizing hormone (LH) pulse due to steroid hormone feedback disorder, changes in sensitivity to the steroid hormone feedback, and reproductive abnormalities due to prenatal exposure to testosterone[7].

Prenatal exposure to testosterone (T) hormone resulted in changes in steroid hormone feedback on GnRH neurons and KNDy neurons (kisspeptin, neurokinin B, dynorphin) in the polycystic ovarian syndrome (PCOS) sheep model. In sheep exposed to prenatal T, there was a decrease and an increase in the number of GABAergic synapses in the preoptic (POA) and medio basal hypothalamic (MBH) neurons, respectively, increasing the number of GABAergic inputs on the KNDy neuron. GnRH and KNDy neurons are important in controlling the reproductive cycle, and alterations in the hormonal steroid feedback mechanism in these neurons may contribute to the occurrence of polycystic ovary syndrome (PCOS). GABAergic refers to the neurotransmitter gamma-aminobutyric acid (GABA), which acts as an inhibitor in the nervous system. Changes in the number of GABAergic synapses on POA and MBH neurons affect the activity and response of KNDy neurons. Increased GABAergic input on KNDy neurons can modulate the function of kisspeptin, neurokinin B, and dynorphin, all of which play a role in regulating the reproductive cycle [7].

Mice were injected with 100 µg of testosterone propionate and given a high-fat diet for 8 weeks to form a PCOS-IR mouse model, showing symptoms such as vaginal keratosis and abnormal estrus cycles, indicating significant increases in levels of the hormones testosterone (T), luteinizing hormone (LH), LH/FSH, insulin fasting (FIN), and HOMA-IR [8]

Free testosterone

The use of free testosterone in PCOS studies in experimental animals aims to the pathophysiological investigate mechanisms of PCOS, including how increased androgen influences the regulation reproductive of hormones and the development of ovarian follicles. High levels of testosterone or an increase in androgen can interfere with the regulation of reproductive hormones, ovulation, and ovarian follicle High development. androgen exposure during the developmental period can cause changes in the structure and function of the spinal cord in female rats; it can interfere with the process of folliculogenesis and cause an increase in the number of preantral and antral follicles, as well as a decrease in the amount of preovulatory follicle. In addition, PCOS rats also show irregular estrus cycles. High androgen exposure during prenatal periods can affect gonadotropin sensitivity to GnRH stimulation, which can lead to increased pulsed LH secretion and excess androgen. High androgen exposure can also interfere with ovarian granulocyte function and cause increased secretion of LH and testosterone. This may lead to enhanced cAMP activity and the formation of ovarian cysts [9].

Androgenol

Androgen-induced sheep showed changes in the diameter of fur fibers, like an increase in hair diameter in women with PCOS. The findings provide new insights into the influence of prenatal androgenization on hair development and its possible association with PCOS. The research also shows that there are no differences in the expression of the AR, SRD5A1, and HSD17B2 genes between the group of sheep who underwent prenatal androgens and the control group. This research has some limitations, such as a limited number of animals and a limited time of research [21].

Dihydrotestosterone (DHT)

Prenatal androgen induced by DHT (dihydrotestosterone) produces phenotypic changes like polycystic ovarian syndrome (PCOS). Prenatal androgen excesses cause increased androgen sensitivity in the ARN NPY neurons (arcuate nucleus) and changes in the circuit of the GABA neuron (gammaaminobutyric acid) associated with the GnRH neuron (gonadotropin-releasing hormone). However, there were no significant changes in the projection of NPY ARN neurons to GnRH neurons. Increased androgen sensitivity in NPY RNA neurons can interfere with the regulation of reproductive hormones, including the release of GNRH, which can cause changes in patterns of release of reproduction hormones that can further affect folliculogenesis or the formation of ovary follicles. Changes in the circuit of GABA neurons that regulate GnRh release can disrupt menstrual cycle regulation and folliculogenesis. Increased androgen sensitivity to NPY RNA neurons and changes in the circuit of GABA neurons associated with GnRH neurons can interfere with the complex hormonal regulation in the body, which is one of the characteristics of PCOS. It results in disturbances in folliculogenesis, ovulation, and menstrual cycles, all of which are characteristic of PCO. Changes in hormone regulation and nervous activity can contribute to PCOS pathogenesis and associated symptoms [22].

Dehydroepiandrosterone (DHEA)

DHEA (dehydroepiandrosterone) plays a role in inducing the PCOS phenotype in mice (Polycystic Ovary Syndrome) by increasing testosterone and lipid levels as well as lowering blood glucose levels. Mice given DHEA or DHEA and HFD had PCOS-like phenotypes, such as hyperandrogenism, anovulation, and polycystic ovaries. However, rats given DHEA and HFD also experienced more heterogeneous glucolipid metabolic disorders, hyperinsulinemia, and insulin resistance. In addition, the study also showed that the intestinal microbiota plays an important role in the heterogeneous phenotype of the PCOS mouse model. Better and more stable PCOS patterns can be induced with DHEA alone, not with a combination of DHEA and HFD. Antibiotic intervention (ABX) can improve glucose metabolic disorders and hyperinsulinemia but worsen hyperandrogenism and lipid metabolic disturbances in PCOS mice. The results show that the gut microbiome plays a major role in heterogeneous phenotypes in PCOS models. The findings provide new insights into the formation of a PCOS rat model and research into the pathophysiological mechanisms of PCSOS [13].

DHEA increases the proliferation of the glandular epithelium of the uterus, which can lead to the enlargement of glands and the thickening of the walls of the womb. Mice exposed to DHEA experience luminal and gland hyperplasia, with an increase in the number of single uteruses and a decrease in the number of uterine glands. This can affect endometrial receptivity in PCOS patients. DHEA raises the level of estrogen, which may shorten the implantation window. In pregnant mice, excess androgen caused by DHEA leads decreased progesterone levels and to increased estradiol levels. DHEA causes increased collagen deposition, which is an additional phenotype of the uterus. PCOS can contribute to uterine dysfunction and increase the risk of endometrial cancer. Mice exposed to DHEA experience uterine inflammation and fibrosis [11].

DHEA can affect ovary folliculogenesis and oocyte lipid metabolism. In a PCOS mouse model, postnatal DHEA treatment produces PCOS features such as polycystic ovaries, hyperandrogenism, and anovulation. In a related study, the expression of inflammatory genes in the ovary of a mouse model of PCOS induced by DHEA and HFD was studied using RNA sequencing technology. The results showed that differently expressed genes were associated

with inflammatory processes and homocysteine metabolism. Path analysis showed an abnormally expressed mRNA was linked to NF-kB signal pathways, tyrosine metabolic processes, and phenylalanine metabolization. These pathways are involved in chronic inflammation and PCOS. DHEA and HFD can affect PCOS phenotypes and folliculogenesis through mechanisms that involve inflammation and metabolism. The genes that are expressed differently in the ovary of a mouse model of PCOS can be potential therapeutic targets to cope with the inflammation that occurs in PCOS [10].

The pre-pubertal PCOS model in rats, induced by DHEA injection, exhibits irregular phenotypes. These include irregular estrous cycles, multi-cystic ovaries, and abnormal weight changes in the ovary and uterus. However, it should be noted that this model does not fully replicate the key features of PCOS, such as increased ovarian and uterine weight, and enhanced homogeneity of ovarian cyst formation. Therefore, while this model provides some insights into PCOS, it has limitations in accurately representing the disorder. The post-pubertal PCOS model shows improved phenotypes, including a stable increase in ovarian and uterine weight and size, as well as increased homogeneity of ovarian cyst formation and uterine abnormality. These features are key characteristics of PCOS. This new model provides a better understanding of the pathogenesis of PCOS and may contribute to the development of potential therapeutics [12].

Protein expressions of MIF, JNK, and P38 increased significantly in the PCOS and PCOS groups with high-fat diets (HFD) compared to the control groups. However, the difference between PCOS groups and PCOS with HFD is not significant. These results showed that MIF and MAPK signal pathways played a role in the pathogenesis of PCOS in the ovaries of mice. Mice with PCOS and PCOS with HFD had significant weight gains compared to the control group. In addition, the hormones testosterone, insulin, and FSH, the LH/FSH ratio, and the HOMA-IR index also increased significantly in the PCOS and PCOS groups with HFD [14].

Letrozole

The increased androgen signal through the androgen receptor (AR) plays an important role in the development and maintenance of PCOS features. The specific AR signal in the cells that produce kisspeptin also plays a critical role in mechanisms that cause hyperandrogenism to contribute to the development of the reproductive and metabolic features found in PCOS. Another mechanism involved with PCOS is the AR signal specific to cells producing kisspeptin, which plays a critical role in the mechanism that causes hyperandrogenism to contribute to the evolution of the reproductive and metabolic characteristics found in PCOS. Mice with androgen receptor removal are not fully protected from the hyperandrogenism effects induced by letrozole and still experience a decrease in the number of corpora luteum and increased weight gain. Letrozole induction has a significant impact on the development and characteristics of PCOS in mice. The use of letrozole in female rats' results in hyperandrogenism, weight gain, estrus cycle disruption, and insulin resistance. Letrozole also causes an increase in the number of cystic follicles and a decrease in the amount of corpus luteum in the rat's ovaries. Letrozole can be used as an effective PCOS mouse model to study the pathogenesis and treatment of PCOS in humans [15].

The results showed that letrozole-induced mice experienced various phenotypes of PCOS, including ovulation dysfunction, polycystic ovaries, and weight gain. However, after being given a time-limited diet (TRF) for 4 weeks, most of these phenotypes could recover to normal levels [16]. The use of letrozole in rats produced several characteristics of PCOS in rats, including hyperandrogenism, abnormal follicles, hyperglycemia, and oxidative stress. Letrozole also causes the inability of the ovaries to produce a regular ovarian cycle. In mice with PCOS induced by letrozole, there is a significant increase in ovarian weight due to the anabolic effect of letrozole, which causes the accumulation of ovary fat and the formation of many cysts. Increased testosterone levels in mice with PCOS are caused by increased LH pulse frequency [17].

Letrozole is an oral non-steroidal aromatase inhibitor used as an induction of hyperandrogenism in animal models for PCOS. Letrozole inhibits the conversion of androgen to estrogen. Letrozole administration to mice for 7-35 days at a dose of 400 µg/day produced characteristics like PCOS in females, mainly associated with artificial hyperandrogenemia, and did not help identify abnormalities that occurred prior to hyperandrogenemia. The mechanisms of letrozole's influence in inducing PCOS involve weight gain, obesity, estrus cycle changes, insulin resistance, and increased androgen levels. However, this model does not show an increase in the basal LH level that is characteristic of PCOS. Nonetheless, the model is still considered a good one for researching PCOS in humans [18].

Letrozole has a significant effect on the phenotype of PCOS in female rats. Females treated with letrozole showed increased circulatory androgen levels, which is characteristic of women with PCOS. Moreover, rats treated with Letrozole also showed an increase in the expression of the Kiss1, Tac2, and PDYN genes associated with reproductive regulation. This suggests that letrozole may affect the PCOS phenotype in female rats. Female mice treated with letrozole showed an increase in the number of polycystic follicles and a decrease in the amount of the corpus luteum, which indicates a disorder in ovulation. In addition, mice treated with letrozole also showed changes in the expression of the FSHR gene and the steroidogenic enzymes associated with the production of reproductive hormones. It suggests that letrozole may affect folliculogenesis in female rats with PCOS [19].

Letrozole and a high-fat diet (HFD) are used to create a PCOS-IR mouse model. letrozole inhibits the aromatase enzyme, which is responsible for converting androgen to estrogen. In the PCOS-IR mouse model, letrozole produced an increase in androgen levels, which led to ovulation disorders and polycystic characteristics in the ovaries. The high-fat diet (HFD) also plays a role in affecting the phenotype of mice. This diet can cause inflammation in the hypothalamus and disrupt glucose and lipid metabolism in the body, leading to obesity and insulin resistance. With the combination of letrozole and HFD, mice in the PCOS-IR model experienced weight gain, changes in ovarian morphology, increased levels of sex hormones such as LH/FSH and testosterone, as well as increased triglyceride levels, according to the pathological characteristics of PCOS-IR involving endocrine disorders and metabolism. The mechanisms of letrozole and HFD in affecting the PCOS-IR phenotype of mice involve increased levels of androgen, ovulation changes, inflammation of the hypothalamus, and disturbance of glucose and lipid metabolism [20].

Estradiol valerate

Giving EVs to mice aims to increase estrogen levels in the body significantly. This increase in estrogen is one of the main characteristics of PCOS, as in many cases, women with PCOS have higher levels of estrogen than they should have. Increased estrogen levels can interfere with hormone regulation in the body of mice and cause an increase in androgen levels, creating a condition known as hyperandrogenism, which is a major characteristic of PCOS. In PCOS, ovulation often does not occur regularly or does not happen at all; giving EV to mice aims to trigger a similar disorder. Giving EVs to mice can interfere with the development of ovarian follicles, creating conditions that resemble ovarian cysts in PCOS mice. Induction of estrogen valerate (EV) in mice indicates a change in noradrenergic activity in the ovaries. In the group of mice induced by EV, there is an increase in serum estradiol concentrations and concentration of decrease in the а norepinephrine in the upper mesenteric celiac ganglia (CSMG) and the ovary. Decreased concentrations of noradrenaline in the CSMG ovaries may indicate that and the noradrenergic nervous system is involved in the response to hormonal changes induction by EV. These findings show that EV administration in rats affects both the hormonal and nervous systems simultaneously. Changes in estrogen and norepinephrine levels can have an impact on menstrual cycle regulation, reproductive organ development, and other functions in the reproductive system of rats [23].

Estradiol valerate affects the polycystic ovarian syndrome phenotype (PCOS) through several mechanisms. EVs cause increased ERK (extracellular signal-regulated kinase) activity involved in the extracellular pathway. EV PI3K-Akt induces in an increase (phosphatidylinositol 3-kinase-Act) involved in the intracellular pathway. Both pathways contribute to the hormonal and metabolic changes that occur in the ovaries affected by PCOS. The study investigated gene expression in the preantral follicle, and the results showed that the expression of the TGFB1, GDF9, and BMPR2 genes was significantly lower in the PCOS group compared to the control group. However, there were no significant differences in BMP6 or BMP15 expression between the two groups. These findings suggest that gene expression modifications in the preantral follicle can contribute to the pathological condition of PCOS. Animal models with EV injections do not fully replicate the clinical and molecular conditions of PCOS in humans [24].

High fat diet

After induction with a high-fat diet (HFD), mice showed more severe glucolipid metabolic disorders compared to mice not given HFD. They had higher blood glucose levels, worse insulin resistance, and higher cholesterol and triglyceride levels. HFD can also worsen lipid metabolic disorders and increase the risk of obesity in rats. The high-fat diet (HFD) has been shown to have an impact on the development and progression of polycystic ovary syndrome (PCOS). In PCOS mouse models, the HFD has been found to aggravate glucolipid metabolic disorders [13].

Light periodic cycle

Continuous light exposure can disrupt circadian rhythms and cause reproductive changes in mice, characterized by a disrupted oestrus cycle, a reduced number of antral follicles, an increased number of atretic follicles resembling PCOS characteristics, and elevated AMH levels, which is an important clinical parameter in PCOS patients. Mice exposed to continuous light showed increased blood glucose levels after meals and decreased pancreatic beta cell function. There were also changes in gene expression indicating impaired insulin signaling and decreased expression of GLUT4, which plays a role in glucose transport. Continuous light exposure can also affect the composition of the gut microbiota in mice. There was a difference in the diversity of gut microbiota between the group of rats exposed to continuous light and the control group. The dominant bacteria in the mouse gut microbiota were Bacteroidetes and Firmicutes. 4 weeks of continuous light exposure in mice resulted in changes in the phenotype of PCOS in mice, including reproductive and metabolic disorders, and there were changes in the composition of the gut microbiota of mice exposed to continuous light [8].

Diazepam

Diazepam (4,0 mg/kg/day) is used as one of the anti-epileptic drugs used to develop the animal model of PCOS. However, the results of the study show that diazepam use does not produce the same PCOS phenotype as the metabolic and reproductive abnormalities seen in other study groups. After administering diazepam to the rats, milder changes were observed in the morphology of the ovary compared to the other groups. The weight of the ovary did not show a significant increase, and there were fewer cysts present [18].

Sodium valproate

Administration of Sodium Valproate for 21 consecutive days caused weight gain, obesity, estrus cycle irregularities, insulin resistance, and hyperandrogenism in female rats. Sodium valproate also affects ovarian function and androgen synthesis, because of its effects on the spinal cord-hypothalamusovaries. The results of this study show that sodium valproate can induce PCOS with metabolic and reproductive properties like PCOS in humans [18].

Carbamazepine

Carbamazepine is one of the antiepileptic drugs used in the treatment of bipolar disorder. The use of carbamazepine may have adverse effects on the levels of reproductive hormones and consequently on the hypothalamus-gonadal pituitary (HPG) and reproductive functions. Studies have shown that carbamazepine can cause menstrual abnormalities, polycystic ovarian syndrome (PCOS), and overall reproductive endocrine dysfunction in women with bipolar disorder [18].

CONCLUSION

Androgen agents such as testosterone propionate, free testosterone, DHEA, and letrozole, as well as sodium valproate, are effective in the induction of PCOS phenotypes hased on the Rotterdam criteria (oligo/amenorrhea, hyperandrogenic, and polycystic ovaries). PCOS with Insulin Resistance models are effective inductions using testosterone propionate, DHEA, and letrozole. PCOS models are efficient inductions using testosterone propionate and DHEA. The PCOS with Gut Microbiota models are inductively effective metabolic syndromes using DHEA, letrozole, and HFD combinations. The use of the PCOS model is adapted to the desired etiopathogenesis, given that PCOS has multiple pathophysiological characteristics. The adjustment will determine the accuracy of using the PCOS model induction method.

CONFLICT OF INTEREST

The author wishes to state that there is no conflict of interest that may affect the outcome or interpretation in this article.

ACKNOWLEDGMENT

This journal article is written as preliminary research funded by the Ministry of Education, Culture, Research, and Technology through the Indonesian Educational Scholarship Program of the Doctoral Program. The content is entirely the responsibility of the author.

REFERENCES

 De Leo, V., M. C. Musacchio, V. Cappelli, M. G. Massaro, G. Morgante, and F. Petraglia. 2016. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod. Biol. Endocrinol. 14(1):1-7. Doi: 10.1186/s12958-016-0173-x

- 2. Chen, W. and Y. Pang. 2021. Metabolic syndrome and PCOS: pathogenesis and the role of metabolites. Metabolites. 11(12):869 Doi: 10.3390/METABO11120869
- PK, H. T, L. Unnikrishnan, M. Pangath, K. Vasudevan, S. Jayaraman, M. Li, A. Iyaswamy, K. Palaniyandi, and D. Gnanasampanthapandian. 2022. The epigenetic correlation among ovarian cancer, endometriosis and PCOS: A review. Crit. Rev. Oncol. Hematol. 180:103852. Doi: 10.1016/j.critrevonc.2022.-103852
- Kurniawati, E. Y., S. Hadisaputro, and A. Suwandono. 2019. The effect of holistic programs on cortisol serum levels in polycistic ovarium syndrome. Indones. J. Med. 4:376–382. Doi: 10.26911/THEIJMED-.2019.04.04.11.
- Higgins, J. P. T., J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, and V. A. Welch. 2019. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration. 1–694. Doi: 10.1002/9781119536604
- Sterne, J. A. C., J Savović, M. J. Page, R. G. Elbers, N. S. Blencowe, I. Boutron, C. J. Cates, H. Y. Cheng, M. S. Corbett, S. M. Eldridge, and J. R. Emberson. 2019. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 366. Doi: 10.1136/BMJ.L4898
- Porter, D. T., A. M. Moore, J. A. Cobern, V V. Padmanabhan, R. L. Goodman, L. M. Coolen, and M. N. Lehman. 2019. Prenatal testosterone exposure alters GABAergic synaptic inputs to GnRH and KNDy neurons in a sheep model of polycystic ovarian syndrome. Endocrinol. 160:2529– 2542. Doi: 10.1210/EN.2019-00137
- Chu, W., J. Zhai, J. Xu, S. Li, W. Li, Z. J. Chen, and Y. Du. 2020. Continuous lightinduced PCOS-like changes in reproduction, metabolism, and gut microbiota in Sprague-Dawley Rats. Front Microbiol. 10:3145. Doi: 10.3389/FMICB.-2019.03145
- 9. Bakhi, E. S., N. H. Roodbari, M. Anvari, and F. R. Tehrani. 2023. Prenatal kisspeptin

antagonist exposure prevents polycystic ovary syndrome development in prenatally-androgenized rats in adulthood: An experimental study. Int. J. Reprod. Biomed. 21(2):99–110. Doi: 10.18502/ijrm.v21i2.12801

- 10. Ullah, A., M. J. Wang, J. P. Yang, E. A. Adu-Gyamfi, A. Czika, S. K. Sah, Q. Feng, and Y. X. Wang. 2022. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod. Biomed. 44(5):791– 802. Doi: 10.1016/j.rbmo.2021.10.024
- Palmerini, M. G., G. Macchiarelli, D. Cocciolone, I. A. Mascitti, M. Placidi, T. Vergara, G. Di Emidio, and C. Tatone. 2023. Modulating morphological and redox/glycative alterations in the PCOS uterus: effects of carnitines in PCOS mice. Biomed. 11(2):374. Doi: 10.3390/BIO-MEDICINES11020374
- 12. Kim, E-J., M. Jang, J. H. Choi, and K. S. Park. 2018. An improved dehydroepiandrosterone-induced rat model of polycystic ovary syndrome (PCOS): Post-pubertal improve PCOS's features. Front. Endocrinol. 9:735. Doi: 10.3389/fendo.2018.00735
- 13. Wang, X., L. Gu, Y. Zhang, C. Xiong, Y. Peng, and X. Ding. Effects of dehydroepiandrosterone alone or in combination with a high-fat diet and antibiotic cocktail on the heterogeneous phenotypes of PCOS mouse models by regulating gut microbiota. Front. Endocrinol. 13:1030151. Doi: 10.3389/fendo.2022.1030151
- 14. Zhou, D. N., S. J. Li, J. L. Ding, T. L. Yin, J. Yang, and H. Ye. 2018. MIF may participate in pathogenesis of polycystic ovary syndrome in rats through MAPK signalling pathway. Curr. Med. Sci. 38:853– 60. Doi: 10.1007/s11596-018-1953-7
- Decourt, C., Y. Watanabe, M. C. Evans, M. A. Inglis, L. C. Fisher, C. L. Jasoni, R. E. Campbell, and G. M. Anderson. 2023. Deletion of androgen receptors from kisspeptin neurons prevents PCOS features in a letrozole mouse model. Endocrinol. 164(6):bqad077. Doi: 10.1210/endocr/bqad077

- 16. Ryu, K. J., H. Park, Y. I. Han, H. J. Lee, S. Nam, H. G. Jeong, and T. Kim. 2023. Effects of time-restricted feeding on letrozoleinduced mouse model of polycystic ovary syndrome. Sci. Rep. 13(1):1943. Doi: 10.1038/s41598-023-28260-5
- 17. Ibrahim, Y. F., M. Alorabi, W. Y. Abdelzaher, N. D. Toni, K. Thabet, A. Hegazy, H. A. Bahaa, G. E. Batiha, N. N. Welson, M. A. Morsy, and K. N. Venugopala 2022. Diacerein ameliorates letrozole-induced polycystic ovarian syndrome in rats. Biomed. Pharm. 149:112870. Doi: 10.1016/J.BIOPHA.2022.-112870
- Sudhakar, P., R. Kothai, and V. Thenmozhi.
 2019. Development of an animal model for polycystic ovarian syndrome in relation to reproductive and metabolic phenotype. J. Pharm. Sci. Res. 11:2827–32.
- 19. Esparza, L. A., D. Schafer, B. S. Ho, V. G. Thackray, and A. S. Kauffman. 2020. Hyperactive LH pulses and elevated kisspeptin and NKB gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinol. 161:bqaa018. Doi: 10.1210/endocr/bqaa018
- 20. Wang, M. X., Q. Yin, and X. Xu. 2020. A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Med. Sci. Monit. 26: e922136-1. Doi: 10.12659/-MSM.922136
- 21. Dos Santos, J. T., J. E. Da Nóbrega, L. K. S. Mujica, C. D. S. Amaral, F. A. Machado, M. W. Manta, T. M. Rizzetti, R. Zanella, R. Fighera, A. Q. Antoniazzi, and P. B. Gonçalves. 2018. Prenatal androgenization of ewes as a model of hirsutism in polycystic ovary syndrome. Endocrinol. 159:4056–64. Doi: 10.1210/EN.2018-00781
- 22. Marshall, C. J., M. Prescott, and R. E. Campbell. 2020. Investigating the NPY/AgRP/GABA to GnRH neuron circuit in prenatally androgenized PCOS-like mice. J. Endocr. Soc. 4:1–12. Doi: 10.1210/JENDSO/BVAA129
- 23. Linares, R., G. Rosas, E. Vieyra, D. A. Ramírez, D. R. Velázquez, J. A. Espinoza, C. Morán, R. Domínguez, and L. Morales-Ledesma. 2019. In adult rats with polycystic ovarian syndrome, unilateral or

bilateral vagotomy modifies the noradrenergic concentration in the ovaries and the celiac superior mesenteric ganglia in different ways. Front. Physiol. 10:1309. Doi: 10.3389/FPHYS.2019.01309

24. Asghari, R., V. Shokri-Asl, H. Rezaei, M. Tavallaie, M. Khafaei, A. Abdolmaleki, and A. M. Seghinsara. Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerateinduced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clin. Exp. Reprod. Med. 48:245–54. Doi: 10.5653/cerm.2020.-04112

25. Ding, Y., Z. Jiang, B. Xia, L. Zhang, C. Zhang, and J. Leng. Mitochondria-targeted antioxidant therapy for an animal model of PCOS-IR. Int. J. Mol. Med. 43:316–24. Doi: 10.3892/ijmm.2018.3977