PENGGUNAAN BAHAN ADITIF MASTER GLENIUM ACE 8595 UNTUK MEMINIMALISIR POROSITAS PADA BETON

Amelia Dwi Fitriani, Zendy Bima Mahardana, Salman Alfaridh Pasya, Niko Andika Erwanda, Nadi Rheiza Fathurrohman, Atsfiela Dzulkhan Qalby, Satria Perdana Okta

Abstract

Concrete has now become the most essential material in modern construction. The strength and durability of concrete are vital factors that influence the strength and stability of buildings and infrastructure. Porosity refers to the degree to which concrete has voids or voids within its structure. Concrete porosity has a significant impact on concrete compressive strength. The higher the level of porosity, the lower the compressive strength of the concrete. In this research, we conducted a concrete formulation experiment by adding a type F additive to MasterGlenium Ace 8595. This research investigates the effect of adding the additive Master Glenium Ace 8595 on changes in concrete porosity and increasing concrete compressive strength. The results of the research show that from the aggregate suitability testing, it was stated that all the aggregates tested were suitable for use as a building material for concrete, workability testing obtained results with dilute criteria, porosity testing obtained an average porosity of 8.05%, and compressive strength testing obtained an average compressive strength value. -an average of 23.56 MPa indicates an increase of 8.69% of the planned concrete quality. This research concludes that concrete porosity is one of the factors that must be considered to increase the compressive strength of concrete because it significantly influences its density and compressive strength. Keeping the porosity at a low level and the compressive strength of the concrete at a high level can ensure that the concrete structure has good resistance to loads and the environment and reduces the risk of damage and maintenance.

Keywords

Porosity, Compressive Strength, Master Glenium Ace 8595

Full Text:

PDF

References

, A. C. (1997). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete C642-97. ASTM International, March, 1–3.

Affandi, S., Mahardana, Z. B., Affandi, H. A., & Sahdana, O. H. (2023). Meningkatkan Kualitas Kuat Tekan Beton Menggunakan Bahan Modifikasi Serat Baja. 12(02), 95–100.

ASTM C-535. (2014). C131/C131M-14 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Annual Book of American Society for Testing Materials ASTM Standards,West Conshohocken, USA, 03, 1–3.

ASTM C117. (2017). Standard Test Method for Materials Finer than 75-µm (No . 200) Sieve in Mineral Aggregates by Washing. ASTM International, 200, 1–3.

ASTM C143-03. (2003). ASTM C 143/C 143M – 03 Standard Test Method for Slump of Hydraulic-Cement Concrete. Annual Book of ASTM Standards, 1–4.

ASTM C1621. (2014). C 1621M-09b “Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring.” Annual Book of ASTM Standard, i, 5.

ASTM C40 / C40M - 16. (2016a). Organic Impurities in Fine Aggregates for Concrete. Reproduction, August, 1–2.

https://www.astm.org/Standards/C40.htm

ASTM C40 / C40M - 16. (2016b). Organic Impurities in Fine Aggregates for Concrete. Reproduction, August, 1–2.

Domone, P. (1998). Domone 1998.pdf.

Elrazek, M. A., & Shafy Gamal, Y. A. (2021). The Reliable Concrete Compression Strength Assessment by SCHMIDT Hammer for Different Concrete Grades. IOP Conference Series: Materials Science and Engineering, 1171(1), 012004. https://doi.org/10.1088/1757-899x/1171/1/012004

Februari, N., & Adnan, A. (2024). Inovasi Teknologi Beton Self Compacting Concrete Terhadap Panjang Pengaliran ( L-Flow ) Dengan Variasi Umur Perawatan Beton untuk meminimalisir penggunaan air pada campuran beton . Semaking besar pengurangan semen , proporsi semen terhadap campuran beton . 2(1).

IS:383-. (2016). IS 383 (2016) :Coarse and Fine Aggregate for Concrete- Specification. In Bureau of Indian Standard, BIS, New Delhi India 110002.

Kartini, W., & Sumaidi. (2021). Porosity Analysis and Compressive Strength of Normal Concrete with Synthetic Wood Waste Filler Additives. IOP Conference Series: Materials Science and Engineering, 1125(1), 012016. https://doi.org/10.1088/1757-899x/1125/1/012016

Liu, J., Ren, F., & Quan, H. (2021). Prediction model for compressive strength of porous concrete with low-grade recycled aggregate. Materials, 14(14). https://doi.org/10.3390/ma14143871

Mahardana, Z. B., Pambudi, W. R., Emilia, O. F., Fasyaro, R. F., Aprinia, A. D., Mustafa, D. T., & Induwati, M. (2023). Meningkatkan Kuat Tekan Beton Dengan Menggunakan Material Recycle Concrete Aggregate (RCA). Media Ilmiah Teknik Sipil, 11(1), 1–8. https://doi.org/10.33084/mits.v11i1.3627

Muhajjir, I., Abror, A., & Zega, B. C. (n.d.). PENGARUH KADAR LUMPUR MATERIAL TERHADAP KUAT TEKAN BETON PADA PC SPUN PILE DI PT JAYA BETON INDONESIA SURABAYA. 1(1).

Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38(January). https://doi.org/10.1016/j.jobe.2021.102196

Paul Thanaraj, D., Kiran, T., Kanagaraj, B., Nammalvar, A., Andrushia, A. D., Gurupatham, B. G. A., & Roy, K. (2023). Influence of Heating–Cooling Regime on the Engineering Properties of Structural Concrete Subjected to Elevated Temperature. Buildings, 13(2). https://doi.org/10.3390/buildings13020295

Ridho, M., Wicaksono, S., Qoly, A., & Hidayah, A. (2017). High Stenghth Concrete with high cement substitution by adding Fly ash , CaCO3 , Silica sand , and Superplasticizer. 020068. https://doi.org/10.1063/1.4976932

Sebastian, L., Syarifudin, A., & Alamsyah, A. (2021). Analisis Kuat Tekan Beton K.200 Dengan Menggunakan Limbah Pecahan Batu Bata Sebagai Pengganti Agregat Kasar. Jurnal Teknik Sipil, 10(1), 41–50. https://doi.org/10.36546/tekniksipil.v10i1.459

Sipil, T., Perencanaan, D., Kamil, F., & Kurnila, N. (2023). Jurnal Konstruksi Dan Infrastruktur. Jurnal Konstruksi, XI(2), 77–88.

SNI 03-2834-2000. (2000). SNI 03-2834-2000: Tata cara pembuatan rencana campuran beton normal. Sni 03-2834-2000, 1–34.

Yavuz, O., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical , durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128

Yuan, X. (2022). Study on the mechanical properties and frost resistance of multiple modified concrete Study on the mechanical properties and frost resistance of multiple modi fi ed concrete. 3–14.

Zada, W., & Ali, Z. (2023). Physico-mechanical and petrographic insights of Lockhart Limestone , sections of Islamabad ,. 10, 33–45.

Refbacks

  • There are currently no refbacks.