Sterculia quadrifida R.Br: A Comprehensive Review of Ethnobotany, Phytochemistry, Pharmacology and Toxicology

Ulfa Afrinurfadhilah Darojati¹, Retno Murwanti² and Triana Hertiani³*

¹Magister of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta, Indonesia, 55281.
²Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta, Indonesia, 55281.
³Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta, Indonesia, 55281.

*email korespondensi: triana_hertiani@ugm.ac.id

Received 21 June 2021, Accepted 01 December 2021, Published 15 March 2022

Abstract: Sterculia quadrifida, R.Br. is one of the plants that grows on the mainland of Timor, East Nusa Tenggara. Sterculia quadrifida, R.Br. commonly known as Peanut tree in English and faloak in Indonesian has various pharmacological activities and has been widely used in traditional medicine. This review article aimed to provide a comprehensive overview of the potential of the faloak plant as an herbal medicine by looking at various aspects such as ethnobotany, phytochemicals, pharmacology and toxicity. Literature searches are carried out in scientific databases that are accepted worldwide such as ScienceDirect, Scopus, PubMed, Springer Link, Wiley Online Library and advanced searches on Google scholars, books, abstracts, theses, scientific reports, and several non-impact and non-indexed journals with the search keywords "Sterculia quadrifida" or "Peanut tree" or "Red fruit kurajong" or "Faloak". From the various literature that has been collected, faloak has been shown to have pharmacological activities such as anticancer, antioxidant, antifungal, immunomodulatory, antiviral, antibacterial, antidiabetic, and antipyretic. The existence of this activity cannot be separated from the chemical compounds contained therein such as flavonoids, alkaloids, terpenoids, phenols, tannins and saponins. Faloak also has low toxicity with LD₅₀ > 5000 mg/kg body weight rats.

Keywords: ethnobotany; pharmacology; phytochemistry; Sterculia quadrifida, R.Br; toxicity

1. Introduction

Indonesia is a country that has the largest number of plant species in the world where 7,500 of the 30,000 plants are known to have potential as medicinal plants (Rollando et al., 2020). Sterculia quadrifida, R.Br. is one of the plants that grows on the mainland of Timor, East Nusa Tenggara. Sterculia quadrifida, R.Br. commonly known as Peanut tree in English and faloak in Indonesian has various pharmacological activities and has been widely used in traditional medicine. In general, the bark of faloak becomes the most commonly used part of the plant in medicine by East Nusa Tenggara people. Faloak bark is believed to cure various diseases such as hepatitis, diabetes and indigestion. Faloak bark contains natural antioxidant compounds, namely flavonoids and phenolic compounds that can protect the body from free radical attacks (Siswadi et al., 2013).
Various studies related to this species have been carried out. Due to the widespread use of *Sterculia quadrifida* for the treatment of various diseases in traditional medicine systems, so the desired benefits need to be critically evaluated. Therefore, this review comprehensively examines the potential of *faloak* as a traditional medicine in terms of ethnobotany, phytochemical, pharmacological activity and toxicity. The information that has been collected is expected to be useful for future research related to *faloak*.

2. **Material and Methods**

Literature searches were conducted in scientific databases accepted worldwide such as ScienceDirect, Scopus, PubMed, Springer Link, Wiley Online Library, and advanced searches on Google scholar as well as recognized books, theses, abstracts, scientific reports, and several nonimpact and nonindexed journals. The search strings used were "*Sterculia quadrifida*" or "Peanut tree" or "Red fruit kurajong" or "Faloak." Further relevant literatures were searched in these databases and selected those with a period of 10 years both in English and Indonesian.

3. **Result and Discussion**

The authors have studied more than 50 full papers and a total of 42 peer-reviewed papers focusing on ethnobotany aspects (ecology and distribution, plant morphology, habitat, taxonomic classification, vernacular names, propagation, and traditional use), phytochemical, pharmacological activities (anticancer, antioxidant, antifungal, immunomodulatory, antiviral, antibacterial, antidiabetic, and antipyretic) as well as their toxicity effects were selected for this review. This review is useful for improving advanced knowledge of the therapeutic effects of *faloak* and improving future pre-clinical and clinical research plans.

3.1. **Ethnobotany aspect**

Ethnobotany aspects discussed in this review include the ecology and distribution of *faloak* plants, morphology, habitat, taxonomic classification, vernacular names, propagation, and traditional use by the community.

3.1.1. Ecology and distribution

*Sterculia quadrifida* comes from Australia and spreads from northeastern New South Wales, to Queensland to Papua New Guinea and the Northern Territory, as well as Western Australia. Aboriginal people use *faloak* leaves to treat wounds and stings, canker sores, skin problems, and eye pain. While the seeds are used as food and the bark is used for weaving baskets and other products. The inner bark of this tree is also widely used to make ropes, nets and fishing ropes. In Indonesia, *faloak* can be found in East Nusa Tenggara, while in Timor island the distribution includes the districts of Belu, South Central Timor, North Central Timor, Kupang and Kupang City as many as 6.92 trees/hectare. Data collected from 2 populations of *faloak* trees, namely Hamba and Kanatang, were 6.2 trees/hectare, while in Alor Regency,
Faloak was found on Pantar Island as many as 4.68 trees/hectare. The optimal growth of faloak occurs at an altitude of 0-450 masl, but can still be found at an altitude of 889 masl in Netpala Village, South Central Timor regency (Siswadi, 2015). The most potential faloak is found in Timor Island, which is spread from Belu Regency and West Timor Island / City and Kupang Regency (Siswadi et al., 2015). The most widely used part of the faloak tree is its bark, mainly to treat liver disease. In the market, faloak is sold for IDR 1,600/piece. The traders also sell faloak skin mixed with other simplicia at a price of IDR 5,000/can (Siswadi et al., 2016).

3.1.2. Morphology

Faloak tree can reach a height of up to 15 m or more, the crown is spread out, the bark is light gray, and secretes lymph when it is split. The flowering season is between April-June and the fruiting season is between June-October each year. The leaves are dark green and have an oval shape with a length of 5-12 cm and a width of 4-8 cm. The fruit has an oval shape like a star on the outer surface, yellow, red or orange in adulthood (Siswadi, 2015). The seeds are ellipsoid-shaped about 10 mm and covered with a thin black epidermis. When it is ripening, the faloak seeds are protected by the green skin of the fruit. After the flowering period ends at the age of 3-4 months the fruit skin will turn orange, which will then turn brown after 1-3 weeks later which indicates the seeds are old and the fruit skin opens into two parts. In one fruit there are usually between 4-8 seeds wrapped by a layer of black epidermis, with the position of the seeds in the fruit lined up and sticking to the skin of the fruit, they will be easily peeled when the seeds are old. The seeds are edible and taste like raw nuts (Siswadi et al., 2012).

3.1.3. Habitat

Faloak is a small tree that grows in rainforest, scrubs, and gallery forests. Faloak that grows in semi-arid land at an altitude of 0-900 masl can reach a height of up to 20 m. The faloak tree (Sterculia quadrifida, R.Br.) is one of the plants known to East Nusa Tenggara people that grows wildly in forest areas and around settlements that grow on rocky soil (Soeharto & Tenda, 2018). The climatic and tread conditions in the East Nusa Tenggara region which are classified as semi arid are thought to exert pressure on faloak growth, thus potentially producing a large secondary metabolites (Siswadi et al., 2016).

3.1.4. Taxonomic classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Tracheophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Subclass</td>
<td>Sterculioideae</td>
</tr>
<tr>
<td>Order</td>
<td>Malvales</td>
</tr>
<tr>
<td>Family</td>
<td>Malvaceae</td>
</tr>
</tbody>
</table>
Genus : Sterculia L.
Species : *Sterculia quadrifida*, R.Br. (1844) (Siswadi *et al*., 2013)

### 3.1.5. Vernacular names

*Sterculia quadrifida*, R.Br. known by various names such as Peanut Tree (UK), Red-Fruit Kurajong (Australia), Kuman, and Komila (Timor Leste). In addition, this plant also has several local names, namely Faloak (Kupang), Nitaen or Mitaen (Belu), Flolo (North Central Timor), Kawarid (Central Sumba), Penil (Alor), Ago (Doromeli Village, Flores), Klengis or Slengit (East Flores), Bangilan (Manado), Mangiladu (Gorontalo), Kalimana Olimana (Tobelo), Kaita (Maluku), Lahea (Mangas Island), Pani Wood (Buru Island), and Susulangit (Seram Island) (Siswadi & Saragih, 2017).

### 3.1.6. Propagation

*Sterculia quadrifida* can be propagated generatively by seed. The results revealed that pretreatment or scarification of *Sterculia quadrifida* seeds was needed to increase the rate of germination. In the planting process, the most suitable medium for planting *Sterculia quadrifida* seedlings is a combination medium of black soil (grumusol), sand, and manure with a ratio of 1:1:1 (Siswadi *et al*., 2012). In addition, *Sterculia quadrifida* can also be propagated by vegetative methods (shoot cuttings, stems and pruning gardens), but the vegetative development success is still low. *Faloak* has a hypogeal germination type and the scarification process can be done by soaking the seeds in cold water for 12 hours (Siswadi *et al*., 2013).

### 3.1.7. Traditional use

Traditionally, bark and roots extracts of *Sterculia quadrifida* have been commonly used to treat various diseases such as diabetes, liver and cancer (Lulan *et al*., 2018). Meanwhile, based on a survey conducted on people in East Nusa Tenggara, *Faloak* is most commonly used for the treatment of liver dysfunction (55%), stamina recovery (13%), treating back pain (7%), ulcers (7%), lumbago (6%), malaria (6%), and blood purifiers (6%) (Siswadi *et al*., 2016). The harvesting technique carried out by the community is by slicing or peeling tree bark with certain dimensions or sizes, then drying and boiling it using water. Some of the boiling processes use pure faloak stem bark, but some also use a mixture of other ingredients such as garlic, onion, turmeric, lemongrass, sand ginger, and cinnamon (Siswadi *et al*., 2015).

### 3.2. Phytochemical review

*Faloak* can be used in traditional medicine because it contains various secondary metabolites compounds such as terpenes, alkaloids, flavonoids, phenols, and tannins (Dillak *et al*., 2019). Flavonoids, terpenoids, alkaloids, phenolics and steroids have also been reported in other species of the genus Sterculia. Some other chemical elements that have also been reported from the Sterculia genus plant are sitosterol and betulinic acid from *Sterculia striata* isolates,
Sterculinines I and II from *Sterculia lychnophora* isolates, and 1,6-diferuloyl glucose from *Sterculia foetida* isolates (Sola & Hafid, 2018).

### 3.2.1. Alkaloid

The preliminary test results of chloroform extract of *faloak* bark showed a positive content of alkaloid compounds indicated by the presence of a white precipitate after being given Mayer’s reagent. The separation results using PTLC were obtained by one fraction which was expressed as a single compound after being identified by two dimensional TLC which was suspected as an alkaloid compound. The results of the analysis by UV Spectrophotometry indicate the presence of I band at a wavelength of $\lambda$ max 263,30 nm indicating the presence of a conjugated double bond which is thought to be an alkaloid compound (Firawati & Hidayat, 2017).

### 3.2.2. Flavonoid

Almost various studies that have been conducted have shown that *faloak* contains flavonoid compounds. *Faloak* bark contains natural antioxidant compounds, namely flavonoids and phenolic compounds that can protect the body from free radical attacks (Siswadi *et al*., 2013). Methanol extract of *S. quadrifida* showed a total flavonoid content of 661.85 mg equivalent to quercetin per 100 g extract and showed a high total phenolic content of 116.84 mg equivalent to gallic acid per 100 g extract (Lulan *et al*., 2018). Phytochemical screening on 70% ethanol extract showed that the plant parts of roots, bark, stems, leaves, fruits, and seeds contained flavonoid compounds. The highest total flavonoids were found in the bark of 62.76 mg/g, while the lowest was found in seeds (1.55 mg/g). Total flavonoids in the leaves and fruit are in the range of 11-12 mg/g (Dillak *et al*., 2019). Other studies also showed that the total flavonoids of 96% ethanol extract of *faloak* bark were $3.60 \pm 0.35$ mg QE/g sample (Munawaroh *et al*., 2018). While the water extract of *faloak* bark contains flavonoids in the form of epicatechin 875 mg/kg which is soluble in water and can be an antiviral candidate against HCV JFH1 (Dean *et al*., 2019).

### 3.2.3. Terpenoid

The presence of terpenoid compounds in *faloak* bark can be detected in four fractions namely acetone, ether, ethyl acetate, and hexane fractions (Siswadi *et al*., 2013). Terpenoids are formed from aisonapra and serve as plant protectors against insects. One class of terpenoids that act as antimicrobials are triterpenoids which are widely used to treat skin disorders, antifugus, insecticide, antibacterial and antiviral. Triterpenoids were at least selected into four groups including triterpane, steroids, glycosides and saponins (Robinson, 1995).
3.2.4. Phenolic

Phytochemical screening of ethanol extract 70% faloak showed that the plant parts of the roots, bark, leaves, fruit, and seeds contained phenolic compounds. The highest phenol (82.90 mg/g) is found in the roots, while the smallest phenol is in the seeds (2.89 mg/g) (Dillak et al., 2019). The water fraction of the faloak bark metanolic extract has a total phenolic content of 6.97 ± 0.17 mg gallic acid equivalent per gram (Rollando & Monica, 2018). Fraction 2 has the largest total phenolic content of all fractions (34.16 ± 0.76 mg GAE) and has the highest antioxidant activity (Susanto, 2019). In addition to the previously mentioned compounds, the results of isolation of the active compounds from the faloak bark (Sterculia quadrifida, R.Br.) obtained three isolates which are derivates from gallic acid which have activity as antibiofilms (Rollando, 2017). Scopoletin is a phenolic compound that belongs to the coumarin compounds and is present in the most active fractions, namely hexane and ethyl acetate fractions where this compound is responsible for increasing the phagocytic activity of macrophages (Munawaroh et al., 2020).

3.2.5. Tannin

Tannins are one of the active compounds of secondary metabolites of the polyphenol group produced by plants. Tannin compounds are found in almost all parts of the faloak plant. Phytochemical screening of ethanol extract 70% faloak showed that parts of plants such as roots, barks, leaves, and fruits contained tannin compounds. The highest tannins (71.26 mg/g) were found in the roots while the smallest tannins were in the leaves (10.52 mg/g) (Dillak et al., 2019).

3.2.6. Saponin

Saponin is a glycoside, which is a mixture of simple carbohydrates and aglycones found in various plants. Several studies have shown the presence of saponin compounds in faloak plants. Based on the results of phytochemical screening, saponin compounds have been found in faloak simplicia powder (Ranta, 2011). In addition, the identification results also showed the presence of high levels of saponin compounds in ethanolic extract and methanol extract of faloak bark (Nithbani et al., 2019; Saefudin et al., 2013).

3.2.7. Quinones

Naphtoquinone is one of the quinone compounds that have been isolated from faloak plants. The successfully isolated napthoquinones derivative is kaempferol 3,4'-dixylide from water extract, 2-iminoethyl 2-(2-(1-hydroxypentan-2-yl)phenyl) acetate from ethyl acetate fraction of faloak bark and 2,3-dihydro-6-hydroxy-2-methylenenaphtho[1,2-b]furan -4,5-dione from 96% ethanol extract (Moi Sola, 2019; Rollando et al., 2018; Rollando & Prilianti, 2017).
3.2.8. Fatty Acid

Based on the measurements of H-NMR and C-NMR, it is suspected that the bioactive compounds in faloak seeds are derivatives of hydrolylated fatty acids. The results of faloak isolation was also found the presence of 3-hydroxyoctadecanoic acid compound which has antifungal properties against *C. albicans* (Ranta et al., 2012).

3.3. Pharmacological studies

Widely reported research on faloak is also associated with the potential of the bark as an antibacterial, antifungi, antitumor, antiviral and antioxidant agent. Plant extract studies of the genus Sterculia showed several biological activities such as antidiabetic activity of *S. villosa*, anti-inflammatory and anti-fertility activity of *S. foetida*, larvicidal activity of *S. guttata*, and antiproliferative activity of *S. tavia* (Lulan et al., 2018).

3.3.1. Antioxidant activity

Various studies have been conducted to look at the antioxidant activity of the faloak plant. The ethanol extract of faloak bark (*S. quadrifida* R.Br.) tested with DPPH showed strong antioxidant activity with IC$_{50}$ value of 4.81 ppm while vitamin C as a positive control had strong antioxidant activity with IC$_{50}$ value of 3.49 ppm (Amin et al., 2016). Antioxidant activity is classified as very strong if IC$_{50}$ value is <50 μg/mL, strong if IC$_{50}$ value is 51-100 μg/mL, moderate if IC$_{50}$ value is 101-150 μg/mL, and week if IC$_{50}$ value is >150 μg/mL. The roots and bark of faloak are parts of plants that have very strong antioxidant activity with IC$_{50}$ values of 20.55 ± 0.42 μg/ml and 14.17 ± 0.55 μg/ml, respectively (Dillak et al., 2019). The faloak root methanol extract showed radical scavenging activity against DPPH and ABTS IC$_{50}$ values of 3.11 μg/mL and 7.29 μg/mL respectively (Lulan et al., 2018). Faloak bark methanol extract and water fraction of Faloak bark methanol extract were reported to have antioxidant activity against DPPH with IC$_{50}$ 91.72% (Saefudin et al., 2013) and 45.63 ± 1.47 μg/mL (Rollando & Monica, 2018), and both were classified as very strong antioxidant activities. In addition, faloak leaf methanol extract has IC$_{50}$ value of 69.19% and is classified as a strong antioxidant activity (Saefudin et al., 2013). The extracts obtained from newly regrown bark have higher antioxidant activity than other parts. The IC$_{50}$ value of new regrewed bark (2.51 μg/ml) is even stronger than the IC$_{50}$ value of vitamin C (4.74 μg/ml) (Saragih & Siswadi, 2019). The antioxidant activity of *S. quadrifida* is also stronger than other plants such as *Pterospermum reticulatum* (182 μg/ml) and *Pterospermum rubiginosum* (166 μg/ml) (Jacob & Sreejith, 2019). Groups of compounds that are suspected to be strong influence on antioxidant activity (free radical redction) are phenolic and flavonoids compounds (Leliqia et al., 2020).

However, the opposite happened in the testing of faloak bark which was made into instant drinks and tested for antioxidant activity with DPPH resulting IC$_{50}$ values of 2,307.77 ppm ±
58.20 ppm or 2,249.57-2,365.97 ppm which indicates weak antioxidants (Soeharto & Tenda, 2018). The combination of instant faloak with ginger also showed weak antioxidant activity tested with DPPH resulting in IC₅₀ 2,044.20 ppm ± 32.84 or 2,011.42-2,077.10 ppm (Tenda et al., 2019).

3.3.2. Anticancer activity

Anticancer activity is classified as very active if IC₅₀ value is <5 μg/mL, active if IC₅₀ value is 5-10 μg/mL, moderate if IC₅₀ value is 11-30 μg/mL, and inactive if IC₅₀ value is >30 μg/mL. The results showed that fraction 4 of ethanol extract of faloak bark had the potential to be an anticancer in moderate category with IC₅₀ of 21.89 μg/mL in T47D cancer cells (Rollando & Siswadi, 2016). The result of isolation from faloak stem bark obtained isolate derivatives of naptoquinone compounds namely 2,3-dihydro-6-hydroxy-2-methylenenaphtho[1,2-b] furan -4.5-dione that has anticancer activity against T47D breast cancer cells with IC₅₀ 9.88 μg/mL and a selectivity index value of 30.23 (Rollando & Alfanaar, 2017). Isolate compound 2-iminoethyl 2-(2-(1-hydroxypentan-2-yl)phenyl) acetate from ethyl acetate fraction had cytotoxic activity against T47D breast cancer cells with IC₅₀ 7.12 μg/mL and selectivity index value of 47.53 (Rollando et al., 2018). Ethyl acetate fraction of 96% ethanol extract of faloak bark had the greatest cytotoxic activity against T47D breast cancer cells compared to hexane fraction and diethyl ether fraction with IC₅₀ 24.88 μg/mL and selectivity index value of 15.58. Ethyl acetate fraction accumulated T47D breast cancer cells in the S phase (27.43%) and was able to induce apoptosis so that it could be developed as a chemotherapy agent in improving the effectiveness of breast cancer treatment (Rollando & Prilianti, 2017). Another study showed that the ethyl acetate fraction had the highest cytotoxic activity against T47D, MCF7 and HepG2 cells with IC₅₀ of 9.56; 7.62 ; 3.24 μg/mL while the selectivity index was 2.01; 2.52; 5.94 respectively (Hertiani et al., 2019).

3.3.3. Antifungal activity

The results of faloak bark isolation was also found the presence of 3-hydroxyoctadecanoic acid compound which has anti-fungal properties against C. albicans (Ranta et al., 2012). Methanol extract: water (0.44:0.56) of faloak bark also showed antifungal activity against C. albicans fungus with inhibitory potential of 0.67 cm (Rollando et al., 2019).

3.3.4. Immunomodulatory activity

Decoction of faloak bark have been shown to have immunomodulatory activity in vivo, which can increase macrophage phagocytosis activity and nitric oxide production but cannot increase lymphocyte proliferation and production of IgG (Winanta et al., 2019). Water extract, ethanol extract, and ethanol-water extract significantly increased macrophage phagocytosis but had no effect on lymphocyte proliferation in vitro (Hertiani et al., 2019). Ethyl acetate fraction
at a concentration of 250 μg/mL is the active fraction of ethanolic extract of Faloak bark which has *in vitro* immunomodulatory activity of 51.94 ± 4.67% (Munawaroh et al., 2018). Scopoletin compounds were found in the most active fractions, namely the hexane and ethyl acetate fractions where these compounds are responsible for increasing the phagocytic activity of macrophages (Munawaroh et al., 2020).

### 3.3.5. Antivirus activity

Anti-Hepatitis C Virus (HCV) test results showed that water extracts, 70% ethanol extracts, and methanol extract were active against HCV with IC$_{50}$ value of 6.06 μg/ml, 9.44 μg/ml, and 10.39 μg/ml, respectively. Fractionation of water extract as the most active extract produces seven fractions. Fractions 5 and 6 showed the highest activity with IC$_{50}$ value of 7.60 μg/ml and 8.87 μg/ml, respectively. Furthermore, the cytotoxicity of these two active fractions did not show any toxicity with a value of CC$_{50}$ > 2,000 μg/ml. Methanol extract, 70% ethanol extract, water extract, fraction 5, and fraction 6 aqueous extract of faloak bark have potential activity as anti-HCV (Sola et al., 2018). Another study on faloak bark water extract also had the inhibitory power of HCV genotype 2a strain JFH1 with an IC$_{50}$ value of 11.57 μg/mL and the toxicity of faloak bark water extract in Huh7it cell hepatocytes of CC$_{50}$ >1000 μg/mL. The mechanism action of faloak bark water extract is by inhibiting all stages of the HCV life cycle. The first stage is that the step entry has 93.97% inhibition, the post-entry step has 96.75% inhibition, and the combination step (entry and post-entry step) has 100% inhibition (Dean et al., 2019).

### 3.3.6. Antibacterial activity

Fraction 3 showed high antibacterial activity (IC$_{50}$) in *B. subtilis* (90.51 μg/mL), *E. coli* (80.12 μg/mL), *S. aureus* (77.87 μg/mL), and *S. thyph* (61.23 μg/mL) (Rollando, 2015). The results of the analysis of faloak bark ethanol extract at a concentration of 100% w/v were able to inhibit the growth of *Staphylococcus aureus* bacteria most effectively with an average diameter of the inhibition zone of 2.13 cm (Tenda et al., 2017). Inhibition test of biofilm formation showed isolates 1-3 had antibiofilm activity with minimum inhibitory concentration (MIC$_{90}$) of 100 μg/mL isolates. Isolate 1 has an IC$_{50}$ of 46.87 μg/mL, isolate 2 has an IC$_{50}$ of 45.87 μg/mL, and isolate 3 has an IC$_{50}$ of 42.65 μg/mL (Rollando, 2017). The acetone extract of faloak showed antibacterial activity against *Staphylococcus aureus* and *Bacillus cereus* with inhibition zones of 15.17 mm and 16.17 mm, respectively (Ranta, 2011).

### 3.3.7. Antidiabetic activity

Ethanol extract of faloak bark at doses of 150 mg/kg body weight, 300 mg/kg body weight, 600 mg/kg body weight may affect blood glucose reduction in glucose-induced male white mice (Fernandez & Edel, 2017). Ethanol extract of faloak bark at a dose of 260 mg /kg...
was able to reduce blood glucose levels by 46.07% in alloxan-induced wistar male rats and was no different from the comparison group (glibenklamid). While the dose group of 65 mg/kg and 130 mg/kg reduced blood glucose by 26.32% and 38.09% respectively (Diki-Dongga et al., 2016).

3.3.8. Antipyretic activity

Ethanol extract of *faloak* bark at doses of 150 mg/kg and 300 mg/kg has activity comparable to paracetamol, while the dose of 600 mg/kg has more optimal antipyretic activity than paracetamol dose 1.3 mg/20 g body weight (Yuliani et al., 2016). Compounds that can act as antipyretics are flavonoids and tannins (Faizah et al., 2021). Both compounds are found in *faloak* plants.

3.4. Toxicity

Acute toxicity tests have been conducted on male white rats Sprague-Dawley strain at doses of 40 mg/kg body weight, 200 mg/kg body weight, 1000 mg/kg body weight and 5000 mg/kg body weight. The results of observation for 24 hours no rats died, so the pseudo LD$_{50}$ value of ethanol extract *faloak* bark was >5,000 mg/kg body weight. Observations continued for 14 days to observe the delayed toxic effects. Administration of ethanol extract *faloak* bark for 14 days was able to reduce ALT AST levels. Meanwhile, histopathological observations of rat liver showed the occurrence of liver cell necrosis at a treatment dose of 200-5000 mg/kg body weight (Siswadi & Saragih, 2018). Toxicity tests conducted on male wistar rats with standardized *faloak* bark ethanol extract at doses of 500 mg/kg body weight, 1000 mg/kg body weight, and 2000 mg/kg body weight showed that no deaths occurred after 14 days of treatment. In general, there were no significant changes in animal behavior, body weight, food and water consumption compared to the control group. Histological observations found no sign of toxicity in vital organs. The LD$_{50}$ value obtained from the acute toxicity test results of *faloak* ethanol extract (*Sterculia quadrifida*, R.Br.) is higher than 2000 mg/kg body weight and is categorized as having a low toxicity level (Noviyanah et al., 2021).

4. Conclusion

This review is useful for improving advanced knowledge about the therapeutic effects of *Faloak* and improving future experimental and clinical research plans. *Faloak* has major chemical constituents such as flavonoids, alkaloids, terpenoids, phenols, tannins and saponins which are responsible for various pharmacological activities. Several studies on *faloak* both *in vitro* and *in vivo* have shown various potentials such as antibacterial, immunomodulator, antidiabetic, antiviral, anticancer, antifungal, antipyretic, and antioxidant agent. Several new chemical constituents isolated from *Sterculia quadrifida*, R.Br. also exhibits various biological activities. In addition, *Faloak* also has low toxicity with LD$_{50}$ >5000 mg/kg body weight rats.
From various sources that have been collected, faloak has great potential as a traditional medicine and in the future, further evaluation can be carried out so that it can be developed into herbal products that can be utilized by the community at large.

Acknowledgement

The authors thanked the team from the faculty of pharmacy of Gadjah Mada University who have given suggestions and inputs in writing this review.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

References


Siswadi. (2015). Yield of total extract and flavonoids of Faloak tree bark (Sterculia quadrifida R.Br.) in several diameter classes and altitude strata of the growing place [Thesis]. Faculty of Pharmacy, Universitas Gadjah Mada.


Siswadi, and Saragih, G. S. (2017). The total flavonoid content of stem bark of several families of Sterculiaceae; phallic (Sterculia quadrifida R.Br.) pterigota (Pterygota alata (Roxb.) R. Br.) and nitas (Sterculia foetida L.). National Seminar on Indonesian Medicinal Plants (112–118). Pekanbaru, Sekolah Tinggi Ilmu Farmasi Riau.


