A Low-cost demonstration kit for determination of the active region of x-ray detectors using phototransistors

Saminan Saminan, Fitria Silviana, Soni Prayogi

Abstract

This research develops a low-cost demonstration kit that aims to facilitate understanding of the concept of determining the active region of an X-ray detector using a phototransistor. This demonstration kit provides a practical and effective tool for illustrating the basic principles of X-ray detection, focusing on the phototransistor as the main component. The research method includes designing an electronic circuit capable of converting changes in light received by a phototransistor into an electrical signal that can be measured. The interaction of X-rays with matter can produce fluorescence phenomena that emit visible light. This phenomenon is utilized to design a phototransistor-based X-ray detector by attaching a ZnS (Ag) fluorescent screen to the surface of a phototransistor arranged in a Darlington circuit. The measurement of the active area of the detector was carried out by collimating the x-ray beam from a 2000-watt Philips x-ray generator tube, 60 kV type PW 2215/20 NR 780026, and measuring the output voltage of the detector (Vout) every 1 mm the change in beam position horizontally or vertically. The experimental results show that the Darlington circuit can be applied to design phototransistor-based X-ray detectors. The detector's active area irradiated with x-rays was obtained at (3.5 ± 0.5) mm horizontally and (3.3 ± 0.5) mm in the vertical direction. The results validate the phototransistor's response to X-rays and provide a clear illustration of how the active region of the detector can be identified and measured.

Keywords

Detector; Phototransistor; X-ray; Screen ZnS (Ag)..

Full Text:

PDF

References

Arratia, M., Butter, A., Campanelli, M., Croft, V., Gillberg, D., Ghosh, A., Lohwasser, K., Malaescu, B., Mikuni, V., Nachman, B., Rojo, J., Thaler, J., & Winterhalder, R. (2022). Publishing unbinned differential cross section results. Journal of Instrumentation, 17(01), P01024. https://doi.org/10.1088/1748-0221/17/01/P01024

Beavers, J., Huddleston, K., Hines, N., & McNeil, W. (2022). Modeling electron transport and multiplication in photomultiplier tubes using COMSOL Multiphysics®. Journal of Instrumentation, 17(12), P12015. https://doi.org/10.1088/1748-0221/17/12/P12015

Benali, A., Ishak-Boushaki, G. M., Riffaud, J., & Nourreddine, A.-M. (2022). Geometrical effects on luminescent dosimeter energy response. Journal of Instrumentation, 17(01), P01035. https://doi.org/10.1088/1748-0221/17/01/P01035

Bhowmik, S. (2011). Effect of Radiation and Vacuum. In L. F. M. da Silva, A. Öchsner, & R. D. Adams (Eds.), Handbook of Adhesion Technology (pp. 823–844). Springer. https://doi.org/10.1007/978-3-642-01169-6_32

Chaiwongkhot, K., Kin, T., Nagata, Y., Komori, T., Okamoto, N., & Basiri, H. (2022). 3D cosmic-ray muon tomography using portable muography detector. Journal of Instrumentation, 17(01), P01009. https://doi.org/10.1088/1748-0221/17/01/P01009

Choi, H., Ko, K., Kim, W., Lee, J., Sun, G., Chang, H., Yi, Y., & Cho, G. (2022). Study of timing performance parameters for a SiPM-based digital positron annihilation lifetime spectrometer. Journal of Instrumentation, 17(12), C12007. https://doi.org/10.1088/1748-0221/17/12/C12007

Costa, E., & Muleri, F. (2014). Gamma and X-Radiation. In E. G. Njoku (Ed.), Encyclopedia of Remote Sensing (pp. 219–228). Springer. https://doi.org/10.1007/978-0-387-36699-9_49

D’Andrea, V., Biondi, R., Ferrari, C., Ferella, A. D., Mahlstedt, J., & Pieramico, G. (2022). The ABALONE photosensor. Journal of Instrumentation, 17(01), C01038. https://doi.org/10.1088/1748-0221/17/01/C01038

Darminto, D., Asih, R., Priyanto, B., Baqiya, M. A., Ardiani, I. S., Nadiyah, K., Laila, A. Z., Prayogi, S., Tunmee, S., Nakajima, H., Fauzi, A. D., Naradipa, M. A., Diao, C., & Rusydi, A. (2023). Unrevealing tunable resonant excitons and correlated plasmons and their coupling in new amorphous carbon-like for highly efficient photovoltaic devices. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-31552-5

Dong, J., Pan, Z., Lin, Z., Wang, Z., He, Z., Liu, J., Zhang, H., Jing, H., Bao, Y., Tang, J., & Ye, B. (2022). Optimization of detector placements in reduction of multiple counts for μSR measurements at China Spallation Neutron Source. Journal of Instrumentation, 17(01), P01017. https://doi.org/10.1088/1748-0221/17/01/P01017

Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022). The Effects of Dopant Concentration on the Performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) Heterojunction Solar Cell. International Journal of Renewable Energy Development, 11(1), 173–181. https://doi.org/10.14710/ijred.2022.40193

Hu, Q., Ye, H. Q., Zhang, Q. L., Yi, G. H., Chen, L., Xu, X. Y., & Jin, G. (2022). Handheld portable neutron gamma discrimination spectrometer for environmental detection. Journal of Instrumentation, 17(12), T12002. https://doi.org/10.1088/1748-0221/17/12/T12002

Manning, B. R., Ashton, J. P., & Lenahan, P. M. (2021). Observation of electrically detected electron nuclear double resonance in amorphous hydrogenated silicon films. Applied Physics Letters, 118(8), 082401. https://doi.org/10.1063/5.0041059

Marques, L., Félix, L., Cruz, G., Coelho, V., Caetano, J., Vale, A., Cruz, C., Alves, L., & Vaz, P. (2022). Neutron and Gamma-Ray Detection System Coupled to a Multirotor for Screening of Shipping Container Cargo. Sensors (Basel, Switzerland), 23(1), 329. https://doi.org/10.3390/s23010329

Nagata, J., Yamamoto, S., Noguchi, Y., Nakaya, T., Okudaira, K., Kamada, K., & Yoshikawa, A. (2022). Erratum: Development of a simultaneous imaging system to measure the optical and gamma ray images of Ir-192 source for high-dose-rate brachytherapy. Journal of Instrumentation, 17(01), E01001. https://doi.org/10.1088/1748-0221/17/01/E01001

Naseer, A. P., Krishna, U. S., & Unni, P. K. M. (2022). High-precision thermostat for light scattering experiments of critical samples. Journal of Instrumentation, 17(12), P12007. https://doi.org/10.1088/1748-0221/17/12/P12007

Nazhmudinov, R. M., Shchagin, A. V., Kubankin, A. S., Afonin, A. G., Britvich, G. I., Durum, A. A., Kostin, M. Y., Maisheev, V. A., Pitalev, V. I., Chesnokov, Y. A., & Yanovich, A. A. (2022). Measurement of ionization loss of 50 GeV protons in silicon with smoothly tunable up to 1 cm thickness using a single flat detector. Journal of Instrumentation, 17(01), P01015. https://doi.org/10.1088/1748-0221/17/01/P01015

Neubüser, C., Corradino, T., Mattiazzo, S., Pancheri, L., & collaboration, on behalf of the A. (2022). Impact of X-ray induced radiation damage on FD-MAPS of the ARCADIA project. Journal of Instrumentation, 17(01), C01035. https://doi.org/10.1088/1748-0221/17/01/C01035

Nicholls, D. C., Dopita, M. A., Sutherland, R. S., & Kewley, L. J. (2017). Chapter 17—Electron Kappa Distributions in Astrophysical Nebulae. In G. Livadiotis (Ed.), Kappa Distributions (pp. 633–655). Elsevier. https://doi.org/10.1016/B978-0-12-804638-8.00017-6

Prayogi, S., Asih, R., Priyanto, B., Baqiya, M. A., Naradipa, M. A., Cahyono, Y., Darminto, & Rusydi, A. (2022). Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-24713-5

Prayogi, S., Ayunis, A., Cahyono, Y., & Darminto, D. (2023). N-type H2-doped amorphous silicon layer for solar-cell application. Materials for Renewable and Sustainable Energy. https://doi.org/10.1007/s40243-023-00232-9

Prayogi, S., Ayunis, Kresna, Cahyono, Y., Akidah, & Darminto. (2017). Analysis of thin layer optical properties of A-Si:H P-Type doping CH4 and P-Type without CH4 is deposited PECVD systems. Journal of Physics: Conference Series, 853(1), 012032. https://doi.org/10.1088/1742-6596/853/1/012032

Prayogi, S., Baqiya, M. A., Cahyono, Y., & Darminto. (2019). Optical Transmission of p-Type a-Si:H Thin Film Deposited by PECVD on ITO-Coated Glass. Materials Science Forum, 966, 72–76. https://doi.org/10.4028/www.scientific.net/MSF.966.72

Prayogi, S., Cahyono, Y., & Darminto, D. (2022). Electronic structure analysis of a-Si: H p-i1-i2-n solar cells using ellipsometry spectroscopy. Optical and Quantum Electronics, 54(11), 732. https://doi.org/10.1007/s11082-022-04044-5

Prayogi, S., Cahyono, Y., Hamdani, D., & Darminto. (2022). Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells. Engineering and Applied Science Research, 49(2), Article 2.

Prayogi, S., Cahyono, Y., Iqballudin, I., Stchakovsky, M., & Darminto, D. (2021). The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD. Journal of Materials Science: Materials in Electronics, 32(6), 7609–7618. https://doi.org/10.1007/s10854-021-05477-6

Rambhujun, N., Salman, M. S., Wang, T., Pratthana, C., Sapkota, P., Costalin, M., Lai, Q., & Aguey-Zinsou, K.-F. (2020). Renewable hydrogen for the chemical industry. MRS Energy & Sustainability, 7(1), 33. https://doi.org/10.1557/mre.2020.33

Rattyananda, B. S., Martoprawiro, M. A., Arifah, A., Meliawati, A. P., Widayanti, M. I., Tursinah, R., & Setiadi, Y. (2022). Computation Study of Radioisotopes Gallium-68 (68Ga) Production using Long-lived & High Activity methods. Jurnal Sains Dan Teknologi Nuklir Indonesia (Indonesian Journal of Nuclear Science and Technology), 22(2), Article 2. https://doi.org/10.17146/jstni.2021.22.2.6440

Scharenberg, L., Bortfeldt, J., Brunbauer, F., Christensen, M. J., Desch, K., Flöthner, K., Garcia, F., Janssens, D., Kaminski, J., Lisowska, M., Lupberger, M., Muller, H., Oliveri, E., Orlandini, G., Pfeiffer, D., Ropelewski, L., Rusu, A., Samarati, J., Schwäbig, P., … Veenhof, R. (2022). Development of a high-rate scalable readout system for gaseous detectors. Journal of Instrumentation, 17(12), C12014. https://doi.org/10.1088/1748-0221/17/12/C12014

Schreiner, L. J., Joshi, C. P., Darko, J., Kerr, A., Salomons, G., & Dhanesar, S. (2009). The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance. Journal of Medical Physics / Association of Medical Physicists of India, 34(3), 133–136. https://doi.org/10.4103/0971-6203.54846 Scisciò,

M., Consoli, F., Salvadori, M., Rosmej, O. N., Zähter, S., Giorgio, G. D., Andreoli, P. L., Cipriani, M., Cristofari, G., Angelis, R. D., Günther, M. M., Gyrdymov, M., & Tavana, P. (2022). High sensitivity Thomson spectrometry: Analysis of measurements in high power picosecond laser experiments. Journal of Instrumentation, 17(01), C01055. https://doi.org/10.1088/1748-0221/17/01/C01055

Wang, C., & Gu, C. (2022). X-Ray Diffraction. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-822974-3.00037-9

Yadav, S., Singh, O. P., Choudhary, S., Saroj, D. K., Yogi, V., & Goswami, B. (2021). Estimation and comparison of integral dose to target and organs at risk in three-dimensional computed tomography image-based treatment planning of carcinoma uterine cervix with two high-dose-rate brachytherapy sources: 60: Co and: 192: Ir. Journal of Cancer Research and Therapeutics, 17(1), 191. https://doi.org/10.4103/jcrt.JCRT_199_19

Zhihong, Z., Shimazoe, K., & Takahashi, H. (2022). Characterization of time-of-flight double-photon Compton imaging system by simulation. Journal of Instrumentation, 17(01), C01045. https://doi.org/10.1088/1748-0221/17/01/C01045

Zhong, Z., Wang, X., Yin, X., Tian, J., & Komatsu, S. (2021). Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. International Journal of Molecular Sciences, 22(22), Article 22. https://doi.org/10.3390/ijms222212239

Refbacks

  • There are currently no refbacks.