Effect of sodium oxide (Na2O) glass modifier on physical properties and gamma shielding in tellurite glass systems TeO2-ZnO-PbO-Bi2O3 (TZPB)

Ahmad Marzuki, Selvina Ariyanti, Frisca Aulia Alvyanti, Fransisca Indraningsih Kasy, Devara Ega Fausta, Riyatun Riyatun, Arum Luvita Sari


TZPB glasses with the composition 55TeO2-(41-x)ZnO-2Bi2O3-2PbO-xNa2O (x= 2; 2.5; 3; 3.5 mol%) have been fabricated and characterized to determine the physical properties and gamma radiation shielding parameters. The method of glass fabrication is melt quenching with the holding temperature at 900˚C for 30 minutes and the annealing temperature at 256˚C for 6 hours. The result of the characterization of the density and gamma shielding parameters was calculated using Phy-X PSD software. The glass density was measured using Archimedes's principle and showed a decrease from 5.79 to 5.73 g/cm3. The molar volume increased from 23.3 to 23.6 g/mol with the addition of Na2O concentration. Gamma radiation shielding parameters, LAC, MAC, MFP, HVL, and TVL simulated with the energy range were 10-3-105 MeV. The results of Phy-X/PSD software showed an increasing MAC, MFP, HVL, and TVL and decreasing in LAC with an increase in Na2O concentration.


Tellurite Glass; Gamma Shielding; Melt-Quenching; Phy-X PSD; Shielding Characteristics

Full Text:



AbuAlRoos, N. J., Azman, M. N., Amin, N. A. B., & Zainon, R. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica: 78, 48-57. doi:10.1016/j.ejmp.2020.08.017.

Algethami, M., Ibraheem, A. A., Issa, S. A., Tekin, H. O., Ene, A., Pyshkina, M., ... & Zakaly, H. M. (2022). A comprehensive evaluation of the attenuation characteristics of some sliding bearing alloys under 0.015–15 meV gamma-ray exposure. Materials, 15(7), 2464.

Almuqrin, A. H., & Sayyed, M. I. (2021). Gamma ray shielding properties of Yb3+-doped calcium borotellurite glasses. Applied Sciences, 11(12), 5697.

Alotaibi, B. M., Sayyed, M. I., Kumar, A., Alotiby, M., Sharma, A., Al-Yousef, H. A., … Al-Hadeethi, Y. (2021). Optical and gamma-ray shielding effectiveness of a newly fabricated P2O5–CaO–Na2O–K2O–PbO glass system. Progress in Nuclear Energy, 138, 103798. doi:10.1016/j.pnucene.2021.10379.

Alzahrani, J. S., Sharma, A., Nazrin, S. N., Alrowaili, Z. A., & Al-Buriahi, M. S. (2022). Optical and radiation shielding effectiveness of a newly fabricated WO3 doped TeO2–B2O3 glass system. Radiation Physics and Chemistry, 193, 109968.

Eid, M. S., Bondouk, I. I., Saleh, H. M., Omar, K. M., Sayyed, M. I., El-Khatib, A. M., & Elsafi, M. (2022). Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nuclear Engineering and Technology, 54(4), 1456-1463. https://doi.org/10.1016/j.net.2021.10.007.

Esawii, H. A., Salama, E., El-ahll, L. S., Moustafa, M., & Saleh, H. M. (2022). High impact tungsten-doped borosilicate glass composite for gamma and neutron transparent radiation shielding. Progress in Nuclear Energy, 150, 104321.

Fausta, D. E., & Marzuki, A. (2020, April). Infrared absorption spectra analysis of TeO2-ZnO-Bi2O3-TiO2 doped B2O3 glasses. In Journal of Physics: Conference Series (Vol. 1511, No. 1, p. 012076). IOP Publishing. https://10.1088/1742-6596/1511/1/012076.

Halimah, M. K., Azuraida, A., Ishak, M., & Hasnimulyati, L. (2019). Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. Journal of non-crystalline solids, 512, 140-147.

Halliwell, E., Couch, C., Begum, R., Li, W., & Maqbool, M. (2021). Increase in linear attenuation coefficient by changing crystal structure of materials for radiation shielding and biomedical devices safety. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 126646. doi:10.1016/j.colsurfa.2021.1266.

Hanfi, M. Y., Sayyed, M. I., Lacomme, E., Mahmoud, K. A., & Akkurt, I. (2020). The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nuclear Engineering and Technology. doi:10.1016/j.net.2020.12.012.

Liang, Y., Muhammad, W., Hart, G. R., Nartowt, B. J., Chen, Z. J., Yu, J. B., ... & Deng, J. (2020). A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation. Scientific reports, 10(1), 1-18. https://doi.org/10.1038/s41598-020-66844-7.

Marzuki, A., Ega, F. D., & Saraswati, A. (2022). Effect of B2O3 addition on thermal and optical properties of TeO2–ZnO–Bi2O3–TiO2 glasses. Materials Research Express, 9(2), 025203. https://10.1088/2053-1591/ac55c5.

Marzuki, A., Pramuda, A., & Fausta, D. E. (2020). Effect of Nd2O3 and Na2O concentration on physical and spectroscopic properties of TeO2–Bi2O3–ZnO–Na2O–Nd2O3 glasses. Materials Research Express, 7(6), 065201.

McAlister, D. R. (2012). Gamma ray attenuation properties of common shielding materials. University Lane Lisle, USA.

Pires, L. F. (2022). Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions. Nuclear Engineering and Technology.

Rashid, R. S., Salem, S. M., Azreen, N. M., Voo, Y. L., Haniza, M., Shukri, A. A., & Yahya, M. S. (2020). Effect of elevated temperature to radiation shielding of ultra-high performance concrete with silica sand or magnetite. Construction and Building Materials, 262, 120567. https://doi.org/10.1016/j.conbuildmat.2020.120567.

Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.

Saleh, A., El-Feky, M. G., Hafiz, M. S., & Kawady, N. A. (2022). Experimental and theoretical investigation on physical, structure and protection features of TeO2–B2O3 glass doped with PbO in terms of gamma, neutron, proton and alpha particles. Radiation Physics and Chemistry, 110586.

Waly, E. S. A., Al-Qous, G. S., & Bourham, M. A. (2018). Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiation Physics and Chemistry, 150, 120-124.https://doi.org/10.1016/j.radphyschem.2018.04.029.

Xue, R., Liu, R. Y., Wang, Z. R., Ding, N., & Wang, X. Y. (2021). A Two-zone Blazar Radiation Model for “Orphan” Neutrino Flares. The Astrophysical Journal, 906(1), 51.https://10.3847/1538-4357/abc886.


  • There are currently no refbacks.