The Effect of Volume Target on Quality of Radiotherapy using 3DCRT and IMRT: Dosimetry and Radiobiological Evaluation

Nursakinah Annisa Lutfin, Rena Widita

Abstract

The main goal of radiotherapy is to deliver the maximum possible dose to the target volume and the minimum possible to the surrounding healthy tissue. In this study, planning was carried out on the TPS Eclipse Varian Medical System using 3DCRT and IMRT techniques for 14 cancer patients. 6 cases of lung cancer with PTV were in the range of 175.1 cc - 875.5 cc, and eight brain cancer patients with a PTV range of 148.5 cc - 841.2 cc. This study aims to determine the effect of target volume on the quality of radiation therapy planning using the 3DCRT and IMRT techniques. The evaluation was carried out using dosimetry and radiobiology analysis. Dosimetry assessment analyzes the average dose, D98, D50, D2, CI, and HI on PTV and the average dose on OAR. Radiobiological evaluation by calculating the value of TCP, NTCP, and UTCP. The results showed that based on dosimetry and radiobiology evaluation, the IMRT technique provides better planning quality for radiation therapy by increasing the probability of cancer cells dying at PTV and reducing the risk of OAR compared to planning using the 3DCRT technique. The effect of PTV on planning quality using statistical regression tests showed that PTV did not significantly impact the quality of radiation therapy planning results either using the 3DCRT technique or the IMRT technique.

Keywords

radhiotherapy; 3DRT; IMRT; dosimetry; radiobiogy

Full Text:

PDF

References

Bakiu, E., Telhaj, E., Kozma, E., Ruci, F., & Malkaj, P. (2013). Comparison of 3D CRT and IMRT Tratment Plans. Acta Informatica Medica, 21(3), 211-212. doi:10.5455/aim.2013.21.211-212

Chang, J. H., Gehrke, C., Prabhakar, R., Gill, S., Wada, M., Lim Joon, D., & Khoo, V. (2016). RADBIOMOD: A simple program for utilising biological modelling in radiotherapy plan evaluation. Physica Medica, 32(1), 248–254. doi:10.1016/j.ejmp.2015.10.091

Collins, S. P., Coppa, N. D., Zhang, Y., Collins, B. T., McRae, D. A., & Jean, W. C. (2006). Cyberknife radiosurgery in the treatment of complex skull base tumor analysis of treatment planning parameter. Radiation Oncology, 1(1), 46. doi:10.1186/1748-717x-1-46

Deb, P., & Fielding, A. (2009). Radiobiological model comparison of 3D conformal radiotherapy and IMRT plans for the treatment of prostate cancer. Australasian Physics & Engineering Sciences in Medicine, 32(2), 51–61. doi:10.1007/bf03178629

Emami, B. (2013): Tolerance of normal tissue to therapeutic radiation, Report of Radiotherapy and Oncology, 35–48. https://brieflands.com/articles/rro-2782.html

International Comission on Radiation Unit and Measurment (ICRU). (1993): Prescribing, recording, and reporting photon beam therapy, ICRU Report No.50, 1–72. https://www.icru.org/report/prescribing-recording-and-reporting-photon-beam-therapy-report-50/

International Comission on Radiation Unit and Measurment (ICRU). (2010): Prescribing, recording, and reporting photon beam IMRT, ICRU Report No.83, 1–94. https://www.icru.org/report/prescribing-recording-and-reporting-intensity-modulated-photon-beam-therapy-imrticru-report-83/

Jones, B., & Sanghera, P. (2007). Estimation of Radiobiologic Parameters and Equivalent Radiation Dose of Cytotoxic Chemotherapy in Malignant Glioma. International Journal of Radiation Oncology Biology Physics, 68(2), 441–448. doi:10.1016/j.ijrobp.2006.12.025

Kutcher, G. J., & Burman, C. (1989). Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method gerald. International Journal of Radiation Oncology Biology Physics, 16(6), 1623–1630. doi:10.1016/0360-3016(89)90972-3

Lyman, J. T. (1985). Complication Probability as Assessed from Dose-Volume Histograms. Radiation Research Supplement, 8, 13-19. doi:10.2307/3583506

Mohan, R., Mageras, G. S., Baldwin, B., Brewster, L. J., Kutcher, G. J., Leibel, S., Fuks, Z. (1992). Clinically relevant optimization of 3-D conformal treatments. Medical Physics, 19(4), 933–944. doi:10.1118/1.596781

Robinson, C. G., Fontanella, A., Abraham, C. D., Oh, J. H., Apte, A., Mullen, D., & Deasy, J. O. (2015). Validating a Mechanistic Tumor Control Probability (TCP) Model Applied to Non-Small Cell Lung Cancer (NSCLC) Brain Metastases Treated With Single-Fraction Radiosurgery (SRS). International Journal of Radiation Oncology Biology Physics, 93(3), S51. doi:10.1016/j.ijrobp.2015.07.123

Stanley, J., Breitman, K., Dunscombe, P., Spencer, D. P., & Lau, H. (2011). Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases. Journal of Applied Clinical Medical Physics, 12(2), 245–253. doi:10.1120/jacmp.v12i2.3449

Riet, A. van’t, Mak, A. C. A., Moerland, M. A., Elders, L. H., & van der Zee, W. (1997). A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. International Journal of Radiation Oncology Biology Physics, 37(3), 731–736. doi:10.1016/s0360-3016(96)00601-3

Valdes, G., Iwamoto, K., Lee, P., & Qi, X. (2013). Derivation of Optimum Biological Parameters for Non-Small Cell Lung Tumors With Consideration of Interpatient Heterogeneity. International Journal of Radiation Oncology Biology Physics, 87(2), S97. doi:10.1016/j.ijrobp.2013.06.251

Yoon, M., Park, S. Y., Shin, D., Lee, S. B., Pyo, H. R., Kim, D. Y., & Cho, K. H. (2007). A new homogeneity index based on statistical analysis of the dose-volume histogram. Journal of Applied Clinical Medical Physics, 8(2), 9–17. doi:10.1120/jacmp.v8i2.2390

Zaider, M., & Minerbo, G. N. (1999). Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Physics in Medicine and Biology, 45(2), 279–293. doi:10.1088/0031-9155/45/2/303

Refbacks

  • There are currently no refbacks.