Analysis of Earthquake Activity in Indonesia by Clustering Method

Adi Jufriansah, Yudhiakto Pramudya, Azmi Khusnani, Sabarudin Saputra

Abstract

Indonesia is an area where three large tectonic plates meet, namely the Indo-Australian, Eurasian and Pacific plates, so that Indonesia is included in the earthquake-prone category, with 11,660 earthquake vibrations identified in the Meteorology, Climatology and Geophysics Agency (BMKG) database in 2019 The purpose of this study is to develop a classification of the distribution of earthquakes in Indonesia in 2019 based on the values of magnitude, depth, and position. This research was conducted by using the clustering method based on the K-means algorithm and the DBSCAN algorithm as a comparison. The results of the clustering show that the earthquake data analysis using the K-Means algorithm is superior with a silhouette index value of 0.837, while the DBSCAN algorithm has a silhouette index value of 0.730.

Keywords

earthquake; clustering method; K-means; DBSCAN; BMKG

Full Text:

PDF

References

Akbar, R., Darman, R., Marizka, Namora, J., & Ardewati, N. (2018). Implementasi Business Inteligence Menentukan Daerah Rawan Gempa Bumi di Indonesia dengan Fitur Geolokasi. Jurnal Edukasi Dan Penelitian Informatika, 4(1), 30–35. https://doi.org/10.26740/jieet.v2n1.p13-18

Bahri, Z., & Mungkin, M. (2019). Penggunaan SCR sebagai Alarm Peringatan Dini pada saat terjadi Gempa Bumi. JET (Journal of Electrical Technology), 4(3), 101–105.

Bholowalia, P., & Kumar, A. (2014). EBK-means: A Clustering Technique Based on Elbow Method And K-Means in WSN. International Journal of Computer Applications, 105(9).

Dempster, A.P., Laird, N. M. & Rubin, D.B. (1997). Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society, Series B(39), 1- 38.

Halim, N. N., & Widodo, E. (2017). Clustering Dampak Gempa Bumi di Indonesia Menggunakan Kohonen Self Organizing Maps. Prosiding SI MaNIS (Seminar Nasional Integrasi Matematika Dan Nilai Islami), 1(1), 188–194.

Humaira, H., & Rasyidah, R. (2020). Determining The Appropiate Cluster Number Using Elbow Method for K-Means Algorithm. WMA-2, January.

Ismail. (2021). Klasifikasi Area Gempa Bumi Menggunakan Algoritma Random Forest. Jurnal Ilmiah Informatika Komputer, 26(1), 56–64.

Kencanawati, N. N., Agustawijaya, D. S., & Taruna, R. M. (2020). An Investigation of Building Seismic Design Parameters in Mataram City Using Lombok Earthquake 2018 Ground Motion. Journal of Engineering & Technological Sciences, 52(5).

Kurmiati, D., Fauzi, M. Z., Ripangi, Falegas, A., & Indria. (2021). Clustering of Earthquake Prone Areas in Indonesia Using K-Medoids Algorithm. Malcolm: Indonesian Journal of Machine Learning and Computer Science, 1(1), 47–57.

Kurniati, D., Fauzi, M. Z., Ripangi, R., Falegas, A., & Indria, I. (2021). Clusterisasi Daerah Rawan Gempa Bumi di Indonesia Menggunakan Algoritma K-Medoids: Clustering of Earthquake Prone Areas in Indonesia Using K-Medoids Algorithm. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 47-57.

Marutho, D., Handaka, S. H., & Wijaya, E. (2018, September). The determination of cluster number at k-mean using elbow method and purity evaluation on headline news. In 2018 International Seminar on Application for Technology of Information and Communication (pp. 533-538). IEEE.

Mason, H. B., Montgomery, J., Gallant, A. P., Hutabarat, D., Reed, A. N., Wartman, J., ... & Yasin, W. (2021). East Palu Valley flowslides induced by the 2018 MW 7.5 Palu-Donggala earthquake. Geomorphology, 373, 107482.

Meltzner, A. J., Sieh, K., Abrams, M., Agnew, D. C., Hudnut, K. W., Avouac, J. P., & Natawidjaja, D. H. (2006). Uplift and subsidence associated with the great Aceh‐Andaman earthquake of 2004. Journal of Geophysical Research: Solid Earth, 111(B2).

Murdiaty, M., Angela, A., & Sylvia, C. (2020). Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means. Jurnal Media Informatika Budidarma, 4(3), 744.

Nicolaus, Sulistianingsih, E., & Perdana, H. (2016). Penentuan jumlah cluster optimal pada median linkage dengan indeks validitas silhouette. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 5(2), 97–102.

Permana, A. 2021. Mengenal Gempa Bumi, Sumber, dan Bahayanya. https://www.itb.ac.id/news/read/57739/home/mengenal-gempa-bumi-sumber-dan-bahayanya

Reviantika, F., Harahap, C. N., & Azhar, Y. (2020). Analisis Gempa Bumi Pada Pulau Jawa Menggunakan Clustering Algoritma K-Means. Jurnal Dinamika Informatika, 9(1), 51–60.

Sarah, D., & Soebowo, E. (2013). Liquefaction Due to the 2006 Yogyakarta Earthquake: Field Occurrence and Geotechnical Analysis. Procedia Earth and Planetary Science, 6, 383-389.

Sari, A. W., Jasruddin, & Ihsan, N. (2012). Analisis Rekahan Gempa Bumi dan Gempa Bumi Susulan dengan Menggunakan Metode Omori. Sains Dan Pendidikan Fisika, 8(3), 263–268.

Siregar, A. M. (2018). Penerapan Algoritma K-Means untuk Pengelompokan Daerah Rawan Bencana di Indonesia. INTERNAL (Information System Journal), 1(2), 1-10.

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018, April). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. In IOP Conference Series: Materials Science and Engineering (Vol. 336, No. 1, p. 012017). IOP Publishing.

Refbacks

  • There are currently no refbacks.