Absorption Spectra Comparison of Tm/Ho-Codoped Bototellurite Glasses

Azmi Saraswati, Ahmad Marzuki, Venty Suryanti


This paper presents a comparison study of absorption spectra of borotellurite glasses with compostion: 20TeO2 – 15Bi2O3 – 3TiO2 – (4-x) Na2CO3 – 1Tm2O3 - xHo2O3 where x = 0; 0.5; 1; 1.5; 2; 2.5 (mol%). All glasses are fabricated using melt quenching method. Absorption spectra were recorded at room temperature in the spectral range of 200 – 1100 nm. Within this range, glass with x = 0 mol % of Ho2O3 shows 2 absorption peaks which corresponds to electronics transition from 3H6 to state to 3F3 and 3H4.   For x = 0.5; 1; 1.5; 2; 2.5 (mol%), nine absorption peaks corresponding to electronics transition from 3H6 to state to 5G5, 5G6, 1G4, 1G4, 5F3, 5F4, 5F5, 3F3, and 3H4 are shown. It is shown that absorption at 680 nm and 790 are insensitive to the addition of Ho2O3 in contrast to that at 580 nm and 650 nm.


Borotellurite glasses; Tm3+/Ho3+ codoped glasses; absorption spectra comparison

Full Text:



Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., & Reza Dousti, M. (2013). Concentration Dependent Luminescence Quenching of Er3+-Doped Zinc Boro-Tellurite Glass. Journal of Luminescence, 144, 139–145. https://doi.org/10.1016/j.jlumin.2013.06.050.

Bhatia, V., Kumar, D., Kumar, A., Mehta, V., Chopra, S., Vij, A., … Singh, S. P. (2018). Mixed Transition and Rare Earth Ion Doped Borate Glass: Structural, Optical and Thermoluminescence Study. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-018-0336-y.

Rajagukguk, J., Fitrilawati, Sinaga, B., & Kaewkhao, J. (2019). Structural And Spectroscopic Properties of Er3+ Doped Sodium Lithium Borate Glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117342. https://doi.org/10.1016/j.saa.2019.117342.

Yang, Y., Chen, B., Wang, C., Zhong, H., Cheng, L., Sun, J., … Zhang, X. (2008). Investigation On Structure and Optical Properties of Er3+, Eu3+ Single-Doped Na2O–Zno–B2O3–Teo2 Glasses. Optical Materials, 31(2), 445–450. https://doi.org/10.1016/j.optmat.2008.06.014.

Mao, L.Y., Liu, J.L., Li, L.X., & Wang, W.C. (2020). TeO2-Ga2O3-ZnO Ternary Tellurite Glass Doped With Tm3+ and Ho3+ for 2 μm Fiber Lasers. Journal of Non-Crystalline Solids, 531, 119855 https://doi.org/10.1016/j.jnoncrysol.2019.119855.

Jha, A., Richards, B., Jose, G., Teddy-Fernandez, T., Joshi, P., Jiang, X., & Lousteau, J. (2012). Rare-Earth Ion Doped Teo2 and Geo2 Glasses as Laser Materials. Progress in Materials Science, 57(8), 1426–1491. https://doi.org/10.1016/j.pmatsci.2012.04.003.

Vemasevana Raju, K., Sailaja, S., Nageswara Raju, C., & Sudhakar Reddy, B. (2011). Optical Characterization of Eu3+ And Tb3+ Ions Doped Cadmium Lithium Alumino Fluoro Boro Tellurite Glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(1), 87–91. https://doi.org/10.1016/j.saa.2011.02.009.

Selvaraju, K. & Marimuthu, K. (2012). Structural and Spectroscopic Studies on Concentration Dependent Er3+ Doped Boro-Tellurite Glasses. Journal of Luminescence, 132(5), 1171–1178. https://doi.org/10.1016/j.jlumin.2011.12.056.

Selvaraju, K., Vijaya, N., Marimuthu, K., & Lavin, V. (2013). Composition Dependent Spectroscopic Properties of Er3+ -Doped Boro-Tellurite Glasses. Physica Status Solidi A, 210(3), 607-615. https://doi.org/10.1016/j.jallcom.2012.11.150.

Jackson, S. D. (2009). The Spectroscopic and Energy Transfer Characteristics of The Rare Earth Ions Used for Silicate Glass Fibre Lasers Operating in The Shortwave Infrared. Laser & Photonics Review, 3(5), 466–482. https://doi.org/10.1002/lpor.200810058.

Rao, Ch.S., Kumar, K.U., Babu, P., & Jayasankar, C.K. (2012). Optical Properties of Ho3+ Ions in Lead Phosphate Glasses. Optical Materials, 35(2), 102-107. https://doi.org/10.1016/j.optmat.2012.07.023.

Rajaramakrishna, R., Wongdeeying, C., Yasaka, P., Limkitjaroenporn, P., & Kaewkhao, J. (2019). Spectral Analysis of Ho3+ Doped Barium Zinc BoroTellurite Glasses for Yellow-Green Luminescent Applications. Glass Physics and Chemistry, 45(1), 29-35. https://doi.org/10.1134/S1087659619010061.


  • There are currently no refbacks.