The effect of housing volume of a converting loudspeaker on the output electric power of a loudspeaker-based acoustic energy harvester
Abstract
Keywords
Full Text:
PDFReferences
Dornfeld, D. (2013). Green Manufacturing: Fundamentals and Applications. Chap. 1, p. 289, Springer US.
Pillai M. A., and E. Deenadayalan, (2014), “A Review of Acoustic Energy Harvesting,” Int. J. Precis. Eng. Manuf., vol. 15, p. 949.
Santosa, U. A., I. Setiawan, and A. B. Setio Utomo, (2019), “Pengujian Alat Pemanen Energi Akustik Berbasis Loudspeaker Dengan Sumber Kebisingan Acak dari Mesin Kendaraan Bermotor,” Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2019, Surakarta, p. 152.
Serway R. A. and J. W. Jewwet, (2014), Physics for Scientists and Engineers with Modern Physics, Boston, Brooks/Cole, Ed. 9, Chap. 17, p. 515.
Setiawan, I. (2019), “Studi Eksperimental Penggunaan Loudspeaker Sebagai Pengkon-versi Energy Bunyi Menjadi Listrik Dalam Alat Pemanen Energi Akustik (Acoustic Energy Harvester),” Jurnal Teknologi, vol. 11, p. 9.
Sherrit, S. (2008), “The Physical Acoustics of Energy Harvesting,” IEEE Ultrasonics Symposium Proceedings, p.1046.
Smoker, J., M. Nouh, O. Aldraihem, and A. Baz, (2012), “Energy Harvesting from a Standing Wave Thermoacoustic-Piezoelectric Resonator,” J. App. Phys., vol. 111, p.104901.
Tijani, M. E. H., J. C. H. Zeegers, and A. T. A. M. de Waele, (2002), “A Gas-Spring System for Optimizing Loudspeakers in Thermoacoustic Refrigerators,” J. Appl. Phys., vol. 92, p.2159.
Yuan, M., Z. Cao, J. Luo, and X. Chuo, (2019), “Recent Developments of Acoustic Energy Harvesting: A Review,” Micromachines, vol. 10, p. 48.
Refbacks
- There are currently no refbacks.