Analytical solution of energy eigen value, eigen function and angular wave function of Dirac equation with Rosen Morse plus Rosen Morse potential in terms of Romanovski polynomials for exact spin symmetry
Abstract
The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.
Keywords
Full Text:
PDFReferences
Azizi, M., Salehi, N., & Rajabi, A. A. (2013). Exact Solution of the Dirac Equation for the Yukawa Potential with Scalar and Vector Potentials and Tensor Interaction. ISRN High Energy Physics, 2013, 1–6. doi:10.1155/2013/310392
Bakkeshizadeh, S., & Vahidi, V. (2012). Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method. Adv. Studies Theor. Phys, 6(15), 733-742.
Cari & Suparmi (2012) Approximate Solution of Schrodinger Equation for Hulthen Potential plus Eckart Potential with Centrifugal Term in terms of Finite Romanovski Polynomials vol 2, International Journal of Applied Physics and Mathematics, p 159-161.
Cari, Suparmi and H.Marini (2012) Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode SWKB dan Operator SUSY vol 2 Indonesian Journal of Applied Physics, p 112.
Castillo, David. (2009). Exactly Solvable Potentials and Romanovski Polynomials in Quantum Mechanics. Instituto de F´ısica Universidad Aut´onoma de San Luis Potos. arXiv:0808.1642v2 [math-ph].
Eshghi, M., Hamzavi, M., & Ikhdair, S. M. (2012). Exact solutions of a spatially dependent mass Dirac equation for Coulomb field plus tensor interaction via laplace transformation method. Advances in High Energy Physics, 2012.
Reity, Rubish and Myhalyna. (2014). The WKB Method for the Dirac Equation with Vector-Scalar Potentials in 2+1 and 3+1 Dimensions vol. 50, Proceedings of Institute of Mathematics of NAS of Ukraine, p 1429–1434.
Ikot, A. N., & Akpabio, L. E. (2010). Approximate solution of the Schrodinger equation with Rosen-Morse potential including the centrifugal term. Applied Physics Research, 2(2), 202-208.
Sadeghi, Pahlavani, Naderi and Banijamali. (2005) Solution of the Relativistic Dirac Equation for Woods-Saxon potential Proceedings QPF Sept. 22.
Villalba, V. M. (2005). Exact solution of the Dirac equation in the presence of a gravitational instanton. Journal of Physics: Conference Series, 24, 136–140. doi:10.1088/1742-6596/24/1/016
Weber, H. J. (2007). Connections between Romanovski and other polynomials. Central European Journal of Mathematics, 5(3), 581–595. doi:10.2478/s11533-007-0014-4
Refbacks
- There are currently no refbacks.