Effect of bismuth substitution on magnetic properties of CoFe2O4 nanoparticles: Study of synthesize using coprecipitation method

Didik Eko Saputro, Utari Utari, Budi Purnama

Abstract

Abstract: The effect of bismuth ion substitution on the magnetic properties of cobalt ferrite nanoparticles was identified in this study. This method used in this study was coprecipitation method using 0.1 bismuth ion concentration. The results on hysteresis loop showed that the saturation magnetization of cobalt ferrite nanoparticles decreased with the substitution of bismuth ions, but the coercive field experienced the opposite. Saturation magnetization decreased from 57.97 to 51.19 emu / g, while coercive fields increased from 0.64 to 0.84 kOe.

Keywords

cobalt ferrite; bismuth ion; coprecipitation; magnetic properties

Full Text:

PDF

References

Amiri, S. & Shokrollahi, H. (2013). The role of cobalt ferrite magnetic nanoparticles in medical science. Materials Science and Engineering C. 33, 1-8. https://doi.org/10.1016/j.msec.2012.09.003

Anjum, S., Sehar, F., Awan, M. S. & Zia, R. (2016). Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite. Applied Physics A Material Science & Processing. 122(436), 1-9. https://doi.org/10.1007/s00339-016-9798-z

Chand, J., Kumar, G., Kumar, P., Sharma, S. K., Knobel, M. & Singh, M. (2011). Effect of Gd3+ doping on magnetic, electric and dielectric properties of MgGdxFe2−xO4 ferrites processed by solid state reaction technique. Journal of Alloys and Compounds. 509(40), 9638-9644. https://doi.org/10.1016/j.jallcom.2011.07.055

Eerenstein, W., Mathur, N. D. & Scott, J. F. (2006). Multiferroic and magnetoelectric materials. Nature. 442(7104), 759–765. https://doi.org/10.1038/nature05023

Elkestawy, M. A. & Amer, M. A. (2010). AC conductivity and dielectric properties of Ti-doped CoCr1.2Fe0.8O4 spinel ferrite. Physica B: Condensed Matter. 405(2), 619-624. https://doi.org/10.1016/j.physb.2009.09.076

Gore, S. K., Mane, R. S., Naushad, M., Jadhav, S. S., Zate, M. K., Alothman, Z. A., Hui, B. K. N. (2015). Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Transactions. 7(2524), 1-9. https://doi.org/10.1039/C5DT00156K

Isfahani, M. J. N., Isfahani, P. N., Silva, K. L. D. Feldhoff, A. & Sepelak, V. (2011). Structural and magnetic properties of NiFe2xBixO4 (x=0, 0.1, 0.15) nanoparticles prepared via sol-gel method. Ceramics International. 37, 1905–1909. http://dx.doi.org/10.1016/j.ceramint.2011.02.003

Kiran, V. S. K. & Sumathi, S. (2017). Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. Journal of Magnetism and Magnetic Materials. 421, 113–119. https://doi.org/10.1016/j.jmmm.2016.07.068

Kumar, N. S., & Kumar, N. V. (2016). Effect of Bi3+ Ion Substitution on Magnetic Properties of Cobalt Nano Ferrites Prepared by Sol-Gel Combustion Method. Soft Nanoscience Letters. 6(03), 37-44. http://dx.doi.org/10.4236/snl.2016.63004

Kumar, R. & Kar, M. (2016). Lattice Strain Induced Magnetism in Subtituted Nanocrystalline Cobalt Ferrite. Journal of Magnetism and Magnetic Materials. 416, 335-341. https://doi.org/10.1016/j.jmmm.2016.05.035

Li, F., Liu, J., Evans, D. G., & Duan, X. (2004). Stoichiometric Synthesis of Pure MFe2O4 (M = Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors. Chemistry of Materials. 16(8), 1597-1602. https://doi.org/10.1021/cm035248c

Li, Y., Li, Q., Wen, M., Zang, Y., Zhi Xie, Y., Xu, F., Wie, S. (2007). Magnetic properties and local structure studies of Zn doped ferrites. Journal of Electron Spectroscopy and Related Phenomena. 160(1-3), 1-6. https://doi.org/10.1016/j.elspec.2007.04.003

Lima, A. C., Morales, M. A., Araujo, J. H. Soares, J. M., Melo, D. M. A., & Carrico, A. S. (2015). Evaluation of (BH)max and magnetic anisotropy of cobalt ferrite nanoparticles synthesized in gelatin. Ceramics International. 41(9), 11804-11809. https://doi.org/10.1016/j.ceramint.2015.05.148

Lima, A. C., Peres, A. P. S., Araujo, J. H., Morales, M. A., Medeiros, S. N., Soares, J. M., Melo, D. M. A. & Carrico, A. S. (2015). The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Materials Letters. 145, 56–58. https://doi.org/10.1016/j.matlet.2015.01.066

Manjusha, Rawat, M., & Yadav, K. L. (2015). Structural, dielectric, ferroelectric and magnetic properties of (x) CoFe2O4-(1-x) BaTiO3 composite. IEEE Transactions on Dielectrics and Electrical Insulation. 22(3), 1462-1469. https://doi.org/10.1109/TDEI.2015.7116338

Panda, R. K., Muduli, R. & Behera, D. (2015). Electric and magnetic properties of Bi substituted cobalt ferrite nanoparticles: Evolution of grain effect. Journal of Alloys and Compounds. 634, 239–245. https://doi.org/10.1016/j.jallcom.2015.02.087

Rafiee, E. & Rahpeyma, N. (2015). Selective oxidation of sulfurs and oxidation de-sulfurization of model oil by 12-tungstophosphoric acid on cobalt ferrite nanoparticles as magnetically recoverable catalyst. Chinese Journal of Catalysis. 36(8), 1342–1349. https://doi.org/10.1016/S1872-2067(15)60862-2

Raut, A. V., Barkule, R. S., Shengule, D. R. & Jadhav, K. M. (2014). Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. Journal of Magnetism and Magnetic Materials. 358–359, 87-92. https://doi.org/10.1016/j.jmmm.2014.01.039

Routray, K. L., Sanyal, D., & Behera, D. (2017). Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. Journal of Applied Physics. 122(224104), 1-12. https://doi.org/10.1063/1.5005169

Safi, R., Ghasemi, A., Shoja-Razavi, R. & Tavousi, M. (2015). The role of pH on the particle size and magnetic consequence of cobalt ferrite. Journal of Magnetism and Magnetic Materials. 396, 288-294. https://doi.org/10.1016/j.jmmm.2015.08.022

Shobana, M. K., & Sankar, S. (2009). Synthesis and characterization of Ni1−xCoxFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials. 321(19), 3132-3137. https://doi.org/10.1016/j.jmmm.2009.05.018

Yafet, Y., & Kittel, (1952). Antiferromagnetic Arrangements in Ferrites. Physical Review Journals. 87(2), 290-294. https://doi.org/10.1103/PhysRev.87.290

Yang, C., Jia, L., Wang, S., Gao, C., Shi, D., Hou, Y., & Gao, S. (2013). Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6].4H2O@ GO Particles: A Novel Chemical Approach. Scientific Reports. 3(3542), 1-7. https://doi.org/10.1038/srep03542

Yang, C., Wu, J., & Hou, Y. (2011). Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications. 47(18), 5130-5141. https://doi.org/10.1039/C0CC05862A

Zare, S., Ati, A. A., Dabagh, S., Rosnan, R. M. & Othaman, Z. (2015). Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. Journal of Molecular Structure. 1089, 25–31. https://doi.org/10.1016/j.molstruc.2015.02.006

Refbacks

  • There are currently no refbacks.