Mass spectra of quarkonium systems in the shifted generalized Cornell–inverse quadratic potential model

Etido P Inyang

Abstract

In this study, we present an application of the Shifted Generalized Cornell–Inverse Quadratic Potential (SG-CIQP) to heavy quarkonium systems. By solving the radial Schrödinger equation with the Pekeris-type approximation within the Nikiforov–Uvarov method, we derive closed-form expressions for both the energy eigenvalues and wave functions. This approach is applied to charmonium and bottomonium mesons, yielding mass spectra in excellent agreement with experimental data and established theoretical predictions. Notably, the S-wave states are reproduced with high precision, while the P-wave states are captured with quantitatively reliable accuracy, with minor deviations in the charmonium sector attributable to relativistic and coupled-channel effects. These results not only confirm the robustness of the SG-CIQP framework but also establish its potential as a versatile tool for extending quarkonium studies to spin-dependent interactions, relativistic corrections, and the spectroscopy of exotic hadronic states.

Keywords

Schrödinger equation; Quarkonium spectroscopy; Shifted Generalized Cornell–Inverse Quadratic Potential; Nikiforov–Uvarov method; Pekeris-type approximation

Full Text:

PDF

References

[1] Akpan, I. O., Inyang, E. P., & William, E. S. (2021). Approximate solutions of the Schrödinger equation with Hulthen-Hellmann potentials for a quarkonium system. Revista Mexicana de Física, 67(3), 482–490.

[2] Ali, M. S., Hassan, G. S., Abdelmonem, A. M., Elshamndy, S. K., Elmasry, F., & Yasser, A. M. (2020). The spectrum of charmed quarkonium in a non-relativistic quark model using matrix Numerov’s method. Journal of Radiation Research and Applied Sciences, 13(1), 226–233.

[3] Obu, J. A., Inyang, E. P., William, E. S., Bassey, D. E., & Inyang, E. P. (2023). Comparative study of the mass spectra of heavy quarkonium systems with an interacting potential model. East European Journal of Physics, 3, 146–157.

[4] Ntibi, J. E., Inyang, E. P., Inyang, E. P., William, E. S., & Ibekwe, E. E. (2022). Solutions of the N-dimensional Klein–Gordon equation with ultra-generalized exponential–hyperbolic potential to predict the mass spectra of heavy mesons. Jordan Journal of Physics, 15(4).

[5] Ibekwe, E. E., Inyang, E. P., Emah, J. B., Akpan, A. O., & Yawo, O. J. (2022). Mass spectra and thermal properties of deformed Schrödinger equation for pseudoharmonic potential. Sri Lankan Journal of Physics, 23(2).

[6] Omugbe, E., Aniezi, J. N., Inyang, E. P., Njoku, I. J., Onate, C. A., Eyube, E. S., Ogundeji, S. O., Jahanshir, A., Onyeaju, M. C., Mbamara, C., Obodo, R. M., & Okon, I. B. (2023). Non-relativistic mass spectra splitting of heavy mesons under the Cornell potential perturbed by spin–spin, spin–orbit, and tensor components. Few-Body Systems, 64(66), 1–12.

[7] Inyang, E. P., Nwachukwu, I. M., Ekechukwu, C. C., Ekong, I. B., William, E. S., Lawal, K. M., Momoh, K. O., & Oyelami, O. A. (2024). Analytical solution of the class of inversely quadratic Yukawa potential with application to quantum mechanical systems. Eurasian Physical Technical Journal, 21(4).

[8] Mohammed, I. H., Yabagi, J. A., Akusu, P. O., Ubaidullah, A., Ladan, M. B., & Babakacha, N. (2024). Bound state solution of Schrödinger equation with modified Hylleraas plus inversely quadratic potential using parametric Nikiforov–Uvarov method. Journal of Physics: Theories and Applications, 8(1), 25–36.

[9] Andaresta, W., Suparmi, A., & Cari, C. (2021). Study of Klein–Gordon equation with minimum length effect for Woods–Saxon potential using Nikiforov–Uvarov functional analysis. Journal of Physics: Theor. Appl, 5(2), 56–68.

[10] Inyang, E. P., Aouami, A. E. L., Ali, N., Endut, R., Rusli, N., & Aljunid, S. A. (2025). Determination of probability density, position and momentum uncertainties, and information-theoretic measures using a class of inversely quadratic Yukawa potential. Scientific Reports, 15, 10565. https://doi.org/10.1038/s41598-024-78969-0

[11] Malde, S. S. (2016). Synergy of BESIII and LHCb physics programmes (No. LHCb-PUB-2016-025).

[12] Križan, P. (2015). Belle II and hadron spectroscopy. Hyperfine Interactions, 234(1), 133–140.

[13] Ahmadov, A. I., Aydin, C., & Uzun, O. (2019, April). Bound state solution of the Schrödinger equation at finite temperature. In Journal of Physics: Conference Series (Vol. 1194, p. 012001). IOP Publishing.

[14] Mutuk, H. (2019). Cornell potential: A neural network approach. Advances in High Energy Physics, 2019(1), 3105373.

[15] Kanago, U. V. N., Likéné, A. A., Ema’a, J. M. E., et al. (2024). Spin-averaged mass spectra and decay constants of heavy quarkonia and heavy-light mesons using bi-confluent Heun equation. European Physical Journal A, 60, 47. https://doi.org/10.1140/epja/s10050-023-01216-z

[16] Inyang, E. P., Ali, N., Endut, R., Rusli, N., Aljunid, S. A., Ali, N. R., & Asjad, M. M. (2024). Thermal properties and mass spectra of heavy mesons in the presence of a point-like defect. East European Journal of Physics, 1, 156–166.

[17] Kumar, V., Bhardwaj, S. B., Singh, R. M., & Chand, F. (2022). Mass spectra and thermodynamic properties of some heavy and light mesons. Pramana, 96(3), 125.

[18] Abu-Shady, M., & Fath-Allah, H. M. (2025). Thermodynamic analysis and mass spectra of heavy mesons via the generalized fractional Klein–Gordon equation. Revista Mexicana de Física, 71(3 May–Jun), 030801-1.

[19] Rani, R., Bhardwaj, S. B., & Chand, F. (2018). Mass spectra of heavy and light mesons using asymptotic iteration method. Communications in Theoretical Physics, 70(2), 179.

[20] Purohit, K. R., Rai, A. K., & Parmar, R. H. (2024). Spectroscopy of heavy-light mesons (cs, cq, bs, bq) for the linear plus modified Yukawa potential using Nikiforov–Uvarov method. Indian Journal of Physics, 98(3), 1109–1121.

[21] Horchani, R., Al Kharusi, O., Ikot, A. N., & Ahmed, F. (2024). Thermophysical properties and mass spectra of meson systems via the Nikiforov–Uvarov method. Progress of Theoretical and Experimental Physics, 2024(12), 123A02.

[22] Atangana Likéné, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2022). Nonrelativistic quark model for mass spectra and decay constants of heavy-light mesons using conformable fractional derivative and asymptotic iteration method. International Journal of Modern Physics A, 37(35), 2250229.

[23] Kaushal, R., & Azhothkaran, B. (2025). Mass spectra of charmed hadrons in a screened potential model. Physica Scripta.

[24] Reggab, K. (2024). The application of Cornell potential on determining mass spectra of heavy quarkonium via the Nikiforov–Uvarov method. International Journal of Modern Physics A, 39(05n06), 2450028.

[25] Ikot, A. N., Obagboye, L. F., Okorie, U. S., Inyang, E. P., Amadi, P. O., Okon, I. B., & Abdel-Aty, A. H. (2022). Solutions of Schrödinger equation with generalized Cornell potential (GCP) and its applications to diatomic molecular systems in D-dimensions using extended Nikiforov–Uvarov (ENU) formalism. European Physical Journal Plus, 137(12), 1370.

[26] Inyang, E. P., Ali, N., Endut, R., Rusli, N., & Aljunid, S. A. (2025). The radial scalar power potential and its application to quarkonium systems. Indian Journal of Physics, 99(2), 715–724.

[27] Nikiforov, S. K., & Uvarov, V. B. (1988). Special functions of mathematical physics. Birkhäuser, Basel.

[28] Inyang, E. P., Inyang, E. P., Akpan, I. O., Ntibi, J. E., & William, E. S. (2021). Masses and thermodynamic properties of a quarkonium system. Canadian Journal of Physics, 99(11), 982–990.

[29] Inyang, E. P., Inyang, E. P., Ntibi, J. E., Ibekwe, E. E., & William, E. S. (2021). Approximate solutions of D-dimensional Klein–Gordon equation with Yukawa potential via Nikiforov–Uvarov method. Indian Journal of Physics, 95, 2733–2739.

[30] Tanabashi, M., Carone, C. D., Trippe, T. G., & Wohl, C. G. (2018). Particle Data Group. Phys. Rev. D, 98, 546.

[31] Olive, R., Groom, D. E., & Trippe, T. G. (2014). Particle Data Group. Chin. Phys. C, 38, 54.

[32] Barnett, R. M., Carone, C. D., Groom, D. E., Trippe, T. G., & Wohl, C. G. (2012). Particle Data Group. Phys. Rev. D, 92, 654.

Refbacks

  • There are currently no refbacks.