Analytical solutions of relativistic quantum harmonic oscillators
Abstract
We present analytical solutions for relativistic quantum harmonic oscillators using a Hermite polynomial series approach. Our method yields closed-form energy eigenvalues and normalized eigenfunctions accurate to order , providing improved precision beyond existing first-order relativistic treatments. Through numerical validation, we demonstrate that relativistic corrections become substantial for systems where particle velocities approach appreciable fractions of the speed of light. The theoretical framework offers a foundation for investigating quantum phenomena in relativistic regimes with potential applications to high-energy physics and astrophysics.
Keywords
Full Text:
PDFReferences
Alsing, P. M., Fuentes-Schuller, I., Mann, R. B., & Tessier, T. E. (2006). Entanglement of Dirac fields in noninertial frames. Physical Review A, 74 (3), 032326. https://doi.org/10.1103/PhysRevA.74.032326
Aoki, S., Aoki, Y., Beckman, D., Blum, T., Borsanyi, S., de Divitiis, G., ... & Wittig, H. (2022). Review of lattice results concerning low-energy particle physics. European Physical Journal C, 82 (10), 869. https://doi.org/10.1140/epjc/s10052-022-10536-1
Arbab, A. I. (2017). On relativistic harmonic oscillator. arXiv preprint arXiv:1709.06865.
Armitage, N. P., Mele, E. J., & Vishwanath, A. (2018). Weyl and Dirac semimetals in three-dimensional solids. Reviews of Modern Physics, 90 (1), 015001. https://doi.org/10.1103/RevModPhys.90.015001
Babusci, D., Dattoli, H., Gorska, K., & Penson, K. A. (2012). Relativistic harmonic oscillator. arXiv preprint arXiv:1209.2876.
Belouad, A., Jellal, A., & Mansouri, Y. (2015). Gate-tunable graphene quantum dot and Dirac oscillator. arXiv preprint arXiv:1505.08068.
Berestetskii, V. B., Lifshitz, E. M., & Pitaevskii, L. P. (2018). Quantum electrodynamics (2nd ed.). Butterworth-Heinemann. Birrell, N. D., & Davies, P. C. W. (1982). Quantum fields in curved space. Cambridge University Press.
Bjorken, J. D., & Drell, S. D. (1964). Relativistic quantum mechanics. McGraw-Hill.
Bloch, I., Dalibard, J., & Nascimb`ene, S. (2012). Quantum simulations with ultracold quantum gases. Nature Physics, 8 (4), 267-276. https://doi.org/10.1038/nphys2259
Bothwell, T., Kedar, D., Oelker, E., Robinson, J. M., Bromley, S. L., Tew, W. L., ... & Kennedy, C. J. (2021). JILA SrI optical lattice clock with uncertainty of 2.0 × 10−19. Metrologia, 56 (6), 065004. https://doi.org/10.1088/1681-7575/ab4089
Bothwell, T., Kennedy, C. J., Aeppli, A., Kedar, D., Robinson, J. M., Oelker, E., ... & Ye, J. (2022). Resolving the gravitational redshift in a millimetre-scale atomic sample. Nature, 602 (7897), 420-424. https://doi.org/10.1038/s41586-021-04349-7
Bruschi, D. E., Datta, A., Ursin, R., Ralph, T. C., & Fuentes, I. (2014). Quantum estimation of the Schwarzschild spacetime parameters of the Earth. Physical Review D, 90 (12), 124001. https://doi.org/10.1103/PhysRevD.90.124001
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., ... & Zdeborov´a, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91 (4), 045002. https://doi.org/10.1103/RevModPhys.91.045002
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81 (1), 109-162. https://doi.org/10.1103/RevModPhys.81.109
Chen, Y., Cheng, Y., Liu, Y., & Xu, Q. (2018). High-order energy and linear momentum-conserving methods for the Klein-Gordon equation. Mathematics, 6 (10), 200. https://doi.org/10.3390/math6100200
Chen, S. Y.-C., Yoo, S., & Fang, Y.-L. L. (2021). Quantum machine learning in high energy physics. Machine Learning: Science and Technology, 2 (1), 011003. https://doi.org/10.1088/2632-2153/abc17d
Chen, W., Chen, J., Yan, H., & Zhou, X. (2022). Machine learning on quantum experimental data toward solving quantum many-body problems. Nature Communications, 15 (1), 7895. https://doi.org/10.1038/s41467-024-51932-3
Ciuti, C., Bastard, G., & Carusotto, I. (2005). Quantum vacuum properties of the intersubband cavity polariton field. Physical Review B, 72 (11), 115303. https://doi.org/10.1103/PhysRevB.72.115303
Cooper, F., Khare, A., & Sukhatme, U. (1995). Supersymmetry and quantum mechanics. Physics Reports, 251 (5-6), 267-385. https://doi.org/10.1016/0370-1573(94)00080-M
Deiml, M., Shpilman, K., & Lasser, C. (2024). Quantum realization of the finite element method. arXiv preprint arXiv:2403.19512.
Di Renzo, F., & Scorzato, L. (2021). Numerical stochasticity and the mass gap. Progress in Particle and Nuclear Physics, 118, 103865. https://doi.org/10.1016/j.ppnp.2021.103865
Dral, P. O. (2020). Quantum chemistry in the age of machine learning. Journal of Physical Chemistry Letters, 11 (6), 2336-2347. https://doi.org/10.1021/acs.jpclett.9b03664
Forn-D´ıaz, P., Lamata, L., Rico, E., Kono, J., & Solano, E. (2019). Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 91 (2), 025005. https://doi.org/10.1103/RevModPhys.91.025005
Foulkes, W. M. C., Mitas, L., Needs, R. J., & Rajagopal, G. (2001). Quantum Monte Carlo simulations of solids. Reviews of Modern Physics, 73 (1), 33-83. https://doi.org/10.1103/RevModPhys.73.33
Friis, N., Lee, A. R., & Bruschi, D. E. (2013). Fermionic-mode entanglement in quantum information. Physical Review A, 87 (2), 022338. https://doi.org/10.1103/PhysRevA.87.022338
Fujiwara, K. M., Geiger, Z. A., Singh, K., Senaratne, R., Rajagopal, S. V., Lipatov, M., ... & Weld, D. M. (2018). Experimental realization of a relativistic harmonic oscillator. New Journal of Physics, 20 (6), 063027. https://doi.org/10.1088/1367-2630/aacb5a
Gangopadhyaya, A., Mallow, J. V., & Rasinariu, C. (2017). Supersymmetric quantum mechanics: An introduction (2nd ed.). World Scientific.
Gattringer, C., & Lang, C. B. (2020). Quantum chromodynamics on the lattice. Springer. Geiger, Z. A., Fujiwara, K. M., Singh, K., Senaratne, R., Rajagopal, S. V., Li-patov, M., ... & Weld, D. M. (2018). Observation and uses of position-space Bloch oscillations in an ultracold gas. Physical Review Letters, 120 (21), 213201. https://doi.org/10.1103/PhysRevLett.120.213201
Greiner, W. (2000). Relativistic quantum mechanics: Wave equations (3rd ed.). Springer-Verlag.
Griffiths, D. (2017). Introduction to elementary particles (2nd ed.). Wiley-VCH.
Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to quantum mechanics (3rd ed.). Cambridge University Press.
Gross, C., & Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science, 357 (6355), 995-1001. https://doi.org/10.1126/science.aal3837
Halzen, F., & Martin, A. D. (2019). Quarks and leptons: An introductory course in modern particle physics. John Wiley & Sons.
Hawking, S. W., & Ellis, G. F. R. (2023). The large scale structure of space-time. Cambridge University Press.
Hermann, J., Sch¨atzle, Z., & No´e, F. (2020). Deep-neural-network solution of the electronic Schrodinger equation. Nature Chemistry, 12 (10), 891-897. https://doi.org/10.1038/s41557-020-0544-y
Itzykson, C., & Zuber, J.-B. (1980). Quantum field theory. McGraw-Hill.
Kashiwa, T. (2010). Relativistic quantum mechanics and introduction to quantum field theory. Foundations of Physics, 40 (8), 1033-1052. https://doi.org/10.1007/s10701-010-9446-3
Katsnelson, M. I. (2020). The physics of graphene (2nd ed.). Cambridge University Press.
Kholmetskii, A. L., Missevitch, O. V., & Yarman, T. (2022). Klein-Gordon equation for electrically charged particles with new energy-momentum operator. Proceedings of the Royal Society A, 478 (2262), 20220214. https://doi.org/10.1098/rspa.2022.0214
Kleinert, H. (2009). Path integrals in quantum mechanics, statistics, polymer physics, and financial markets (5th ed.). World Scientific.
Landau, L. D., & Lifshitz, E. M. (1977). Quantum mechanics: Non-relativistic theory (3rd ed.). Pergamon Press.
Lewis, L., Huang, H.-Y., Koretsky, G. M., & Preskill, J. (2024). Improved machine learning algorithm for predicting ground state properties. Nature Communications, 15 (1), 895. https://doi.org/10.1038/s41467-024-45014-7
Longhi, S. (2010). Photonic realization of the relativistic Dirac oscillator. Optics Letters, 35 (8), 1302-1304. https://doi.org/10.1364/OL.35.001302
Longhi, S., Gaspard, P., & Schiavoni, M. (2022). Solving nonlinear Klein-Gordon equations on unbounded domains via the finite element method. arXiv preprint arXiv:2209.07226.
Louko, J., & Satz, A. (2008). How often does the Unruh-DeWitt detector click? Regularisation by a spatial profile. Classical and Quantum Gravity, 25 (5), 055012. https://doi.org/10.1088/0264-9381/25/5/055012
Lu, D., Ward, B. M., & Oskay, C. (2024). Quantum computing in computational mechanics: A new frontier for finite element method. arXiv preprint arXiv:2411.09038.
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E., & Schmidt, P. O. (2015). Optical atomic clocks. Reviews of Modern Physics, 87 (2), 637-701. https://doi.org/10.1103/RevModPhys.87.637
Meng, J., Toki, H., Zhou, S. G., Zhang, S. Q., Long, W. H., & Geng, L. S. (2006). Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Progress in Particle and Nuclear Physics, 57 (2), 470-563. https://doi.org/10.1016/j.ppnp.2005.06.001
Messiah, A. (1999). Quantum mechanics. Dover Publications.
Moshinsky, M., & Szczepaniak, A. (1989). The Dirac oscillator. Journal of Physics A: Mathematical and General, 22 (17), L817-L819. https://doi.org/10.1088/0305-4470/22/17/002
Mukhanov, V., & Winitzki, S. (2007). Introduction to quantum effects in gravity. Cambridge University Press.
Niemczyk, T., Deppe, F., Huebl, H., Menzel, E. P., Hocke, F., Schwarz, M. J., ... & Gross, R. (2010). Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics, 6 (10), 772-776. https://doi.org/10.1038/nphys1730
Niksi´c, T., Vretenar, D., & Ring, P. (2008). Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Physical Review C, 78 (3), 034318. https://doi.org/10.1103/PhysRevC.78.034318
Novoselov, K. S., Mishchenko, A., Carvalho, A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353 (6298), aac9439. https://doi.org/10.1126/science.aac9439
Parker, L., & Toms, D. (2009). Quantum field theory in curved spacetime. Cambridge University Press.
Peres, A., & Terno, D. R. (2004). Quantum information and relativity theory. Reviews of Modern Physics, 76 (1), 93-123. https://doi.org/10.1103/RevModPhys.76.93
Peskin, M. E., & Schroeder, D. V. (2019). An introduction to quantum field theory. Westview Press.
Qi, X.-L., & Zhang, S.-C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83 (4), 1057-1110. https://doi.org/10.1103/RevModPhys.83.1057 Ring, P., & Schuck, P. (1980). The nuclear many-body problem. Springer-Verlag.
Ryder, L. H. (2019). Quantum field theory (2nd ed.). Cambridge University Press. Schaefer, T., Wambach, J., & Weise, W. (2021). QCD phase diagram: An overview. Annual Review of Nuclear and Particle Science, 71, 105-130. https://doi.org/10.1146/annurev-nucl-102419-124627
Schwartz, M. D. (2014). Quantum field theory and the standard model. Cambridge University Press.
Serot, B. D., & Walecka, J. D. (1986). The relativistic nuclear many-body problem. Advances in Nuclear Physics, 16, 1-327.
Sch¨afer, T., & Teaney, D. (2009). Nearly perfect fluidity: from cold atomic gases to hot quark matter. Reports on Progress in Physics, 72 (12), 126001. https://doi.org/10.1088/0034-4885/72/12/126001
Singh, K., Saha, K., Parameswaran, S. A., & Weld, D. M. (2015). Fibonacci optical lattices for tunable quantum quasicrystals. Physical Review A, 92 (6), 063426. https://doi.org/10.1103/PhysRevA.92.063426
Smith, A. R. H., & Ahmadi, M. (2020). Quantum clocks observe classical and quantum time dilation. Nature Communications, 11 (1), 5360. https://doi.org/10.1038/s41467-020-18264-4
Susskind, L., & Friedman, A. (2014). Quantum mechanics: The theoretical minimum. Basic Books.
Tameshtit, A. (2024). Mass independent Klein-Gordon equation. Scientific Reports, 14 (1), 29400. https://doi.org/10.1038/s41598-024-80906-1
Thijssen, J. M. (2007). Computational physics (2nd ed.). Cambridge University Press.
Vretenar, D., Afanasjev, A. V., Lalazissis, G. A., & Ring, P. (2005). Relativistic Hartree- Bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Physics Reports, 409 (3-4), 101-259. https://doi.org/10.1016/j.physrep.2004.10.001
Wong, C. K., & Wong, S. M. (1996). Study of a relativistic quantum harmonic oscillator by the method of state-dependent diagonalization. International Journal of Modern Physics C, 7 (4), 539-548.
Yang, D., Gao, C., Chen, J., Zhang, S., Brown, K. R., & Monroe, C. (2020). Cooling and entangling ultracold atoms in optical lattices. Science, 369 (6503), 550-553. https://doi.org/10.1126/science.aaz6801
Zlokapa, A., Anand, A., Vlimant, J.-R., Duarte, J. M., Job, J., Lidar, D., & Spiropulu, M. (2021). Event classification with quantum machine learning in high-energy physics.Computing and Software for Big Science, 5 (1), 6. https://doi.org/10.1007/s41781-020-00047-7
Refbacks
- There are currently no refbacks.






