Predicting Newtonian cooling with machine learning: a comparative analysis of gradient boosting and random forest models
Abstract
Keywords
Full Text:
PDFReferences
Ahn, J. M., Kim, J., & Kim, K. (2023). Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting. Toxins, 15(10), 608. https://doi.org/10.3390/toxins15100608
Árpád, I., Kiss, J. T., & Kocsis, D. (2024). Role of the volume-specific surface area in heat transfer objects: A critical thinking-based investigation of Newton’s law of cooling. International Journal of Heat and Mass Transfer, 227, 125535. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125535
Barker, A., Style, H., Luksch, K., Sunami, S., Garrick, D., Hill, F., Foot, C. J., & Bentine, E. (2020). Applying machine learning optimization methods to the production of a quantum gas. Machine Learning Science and Technology, 1(1), 15007. https://doi.org/10.1088/2632-2153/ab6432
Brunton, S. L., Hemati, M. S., & Taira, K. (2020). Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical and Computational Fluid Dynamics, 34(4), 333. https://doi.org/10.1007/s00162-020-00542-y
Bunyan, S. T., Khan, Z. H., Al-Haddad, L. A., Dhahad, H. A., Al-Karkhi, M. I., Ogaili, A. A. F., & Al‐Sharify, Z. T. (2025). Intelligent Thermal Condition Monitoring for Predictive Maintenance of Gas Turbines Using Machine Learning. Machines, 13(5), 401. https://doi.org/10.3390/machines13050401
Feng, Y., Duan, Q., Chen, X., Yakkali, S. S., & Wang, J. (2021). Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods. Applied Energy, 291, 116814. https://doi.org/10.1016/j.apenergy.2021.116814
Fukami, K., Fukagata, K., & Taira, K. (2020). Assessment of supervised machine learning methods for fluid flows. Theoretical and Computational Fluid Dynamics, 34(4), 497. https://doi.org/10.1007/s00162-020-00518-y
Già, S. D., & Papurello, D. (2022). Hybrid Models for Indoor Temperature Prediction Using Long Short Term Memory Networks—Case Study Energy Center. Buildings, 12(7), 933. https://doi.org/10.3390/buildings12070933
Guo, T., Shang, B., Duan, B., & Luo, X. (2015). Design and testing of a liquid cooled garment for hot environments. Journal of Thermal Biology, 47. https://doi.org/10.1016/j.jtherbio.2015.01.003
Kochkov, D., Smith, J., Alieva, A., Wang, M., Brenner, M. P., & Hoyer, S. (2021). Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21). https://doi.org/10.1073/pnas.2101784118
Loisel, J., Duret, S., Cornuéjols, A., Cagnon, D., Tardet, M., Derens‐Bertheau, E., & Laguerre, O. (2021). Cold chain break detection and analysis: Can machine learning help? Trends in Food Science & Technology, 112, 391. https://doi.org/10.1016/j.tifs.2021.03.052
Parikh, R. B., Manz, C. R., Chivers, C., Regli, S. H., Braun, J., Draugelis, M., Schuchter, L. M., Shulman, L. N., Navathe, A. S., Patel, M. S., & O’Connor, N. (2019). Machine Learning Approaches to Predict 6-Month Mortality Among Patients With Cancer. JAMA Network Open, 2(10). https://doi.org/10.1001/jamanetworkopen.2019.15997
Pawar, S., San, O., Nair, A., Rasheed, A., & Kvamsdal, T. (2021). Model fusion with physics-guided machine learning. arXiv (Cornell University). http://export.arxiv.org/pdf/2104.04574
Raad, R., Itani, M., Ghaddar, N., & Ghali, K. (2019). A novel M-cycle evaporative cooling vest for enhanced comfort of active human in hot environment. International Journal of Thermal Sciences, 142, 1. https://doi.org/10.1016/j.ijthermalsci.2019.04.010
Samadi, B., Raison, M., Mahaudens, P., Detrembleur, C., & Achiche, S. (2023). Development of Machine learning algorithms to identify the Cobb angle in adolescents with idiopathic scoliosis based on lumbosacral joint efforts during gait (Case study). arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.12588
Sha, H., Moujahed, M., & Qi, D. (2021). Machine learning-based cooling load prediction and optimal control for mechanical ventilative cooling in high-rise buildings. Energy and Buildings, 242, 110980. https://doi.org/10.1016/j.enbuild.2021.110980
Svensen, J. L., Silva, W. R. L. da, Merino, J. P., Sampath, D., & Jørgensen, J. B. (2024). A Dynamic Cooler Model for Cement Clinker Production. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2409.09076
Zeng, X. (2024). A Review on Design of Sustainable Advanced Materials by Using Artificial Intelligence [Review of A Review on Design of Sustainable Advanced Materials by Using Artificial Intelligence]. Deleted Journal, 1(1), 10006. https://doi.org/10.35534/amsm.2024.10006
Zhang, J., Yang, M., Dong, N., & Wang, Y. (2025). Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin. Sustainability, 17(9), 3779. https://doi.org/10.3390/su17093779
Refbacks
- There are currently no refbacks.






