Low-cost implementation of damped harmonic motion for structural vibration studies
Abstract
Keywords
Full Text:
PDFReferences
Akande, I. G., Fajobi, M. A., Odunlami, O. A., & Oluwole, O. O. (2021). Exploitation of composite materials as vibration isolator and damper in machine tools and other mechanical systems: A review. Materials Today: Proceedings, 43, 1465–1470. https://doi.org/10.1016/j.matpr.2020.09.300
Bhansali, G., kumar, S. R., & Singh, G. (2022). Novel viscoelastic vibration isolating methods in space technology: A review. Materials Today: Proceedings, 60, 2001–2003. https://doi.org/10.1016/j.matpr.2022.01.245
Caballero-Russi, D., Ortiz, A. R., Guzmán, A., & Canchila, C. (2022). Design and Validation of a Low-Cost Structural Health Monitoring System for Dynamic Characterization of Structures. Applied Sciences, 12(6), Article 6. https://doi.org/10.3390/app12062807
He, Z., Shi, F., Lin, Z., Zhang, C., Zhou, Y., & Zhao, F. (2023). Experimental characterization on cyclic stability behavior of a high-damping viscoelastic damper. Construction and Building Materials, 371, 130749. https://doi.org/10.1016/j.conbuildmat.2023.130749
Kavyashree, B., Patil, S., & Rao, V. S. (2021). Review on vibration control in tall buildings: From the perspective of devices and applications. International Journal of Dynamics and Control, 9(3), 1316–1331. https://doi.org/10.1007/s40435-020-00728-6
Khoshmanesh, S., Watson, S. J., & Zarouchas, D. (2020). Characterisation of fatigue damage in a thick adhesive joint based on changes in material damping. Journal of Physics: Conference Series, 1618(2), 022058. https://doi.org/10.1088/1742-6596/1618/2/022058
Kumar, A., & Panda, S. (2016). Design of a 1-3 viscoelastic composite layer for improved free/constrained layer passive damping treatment of structural vibration. Composites Part B: Engineering, 96, 204–214. https://doi.org/10.1016/j.compositesb.2016.04.020
Lei, B., Li, J., Wang, J., Peng, G., Fu, B., Zhao, F., & Liao, C. (2024). A novel flexural damping channel magnetorheological damper with high effective magnetic field coverage and experimental verification of damping performance. Smart Materials and Structures, 33(11), 115023. https://doi.org/10.1088/1361-665X/ad8387
Luo, Y., Sun, H., Wang, X., Chen, A., & Zuo, L. (2021). Parametric optimization of electromagnetic tuned inerter damper for structural vibration suppression. Structural Control and Health Monitoring, 28(5), e2711. https://doi.org/10.1002/stc.2711
Meyer, N., & Seifried, R. (2021). Damping prediction of particle dampers for structures under forced vibration using effective fields. Granular Matter, 23(3), 64. https://doi.org/10.1007/s10035-021-01128-z
Mohamed, A., Omer, A. A., & Hassan, A. (2021). Effect of damping material thickness on vibration analysis in pretension layer damping process. IOP Conference Series: Materials Science and Engineering, 1172(1), 012006. https://doi.org/10.1088/1757-899X/1172/1/012006
Nakamura, N., Nabeshima, K., Mogi, Y., & Ota, A. (2024). Nonlinear Earthquake Response Analysis Using Causal Hysteretic Damping and Extended Rayleigh Damping. Journal of Physics: Conference Series, 2647(16), 162004. https://doi.org/10.1088/1742-6596/2647/16/162004
Prayogi, S., Silviana, F., & Saminan, S. (2023). Resistor and Capacitor Time Constant Measuring Instrument Using Arduino UNO. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 12(1), Article 1. https://doi.org/10.24042/jipfalbiruni.v12i1.15323
Prayogi, S., Silviana, F., & Zainuddin, Z. (2023). Scientific Explanation of the Photoelectric Effect Using Common Objects. Jurnal Pendidikan Fisika Indonesia, 19(2), Article 2. https://doi.org/10.15294/jpfi.v19i2.40332
Rainieri, C., Fabbrocino, G., & Cosenza, E. (2010). Some Remarks on Experimental Estimation of Damping for Seismic Design of Civil Constructions. Shock and Vibration, 17(4–5), 737452. https://doi.org/10.3233/SAV-2010-0534
Silviana, F., & Prayogi, S. (2023). An Easy-to-Use Magnetic Dynamometer for Teaching Newton’s Third Law. Jurnal Pendidikan Fisika Dan Teknologi, 9(1), Article 1. https://doi.org/10.29303/jpft.v9i1.4810
Song, R.-F., Wang, J.-L., Yang, Z.-S., & Ma, S.-J. (2025). Optimization Analysis of Vibration Reduction for Large-Span Steel Pedestrian Bridges Based on Tuned Mass Damper Inerter System. Advances in Civil Engineering, 2025(1), 6521700. https://doi.org/10.1155/adce/6521700
Song, X., Cao, T., Gao, P., & Han, Q. (2020). Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method. International Journal of Mechanical Sciences, 165, 105158. https://doi.org/10.1016/j.ijmecsci.2019.105158
Tarpø, M., Georgakis, C., Brandt, A., & Brincker, R. (2021). Experimental determination of structural damping of a full-scale building with and without tuned liquid dampers. Structural Control and Health Monitoring, 28(3), e2676. https://doi.org/10.1002/stc.2676
Wang, L., Nagarajaiah, S., Shi, W., & Zhou, Y. (2020). Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control. The Structural Design of Tall and Special Buildings, 29(15), e1793. https://doi.org/10.1002/tal.1793
Wang, W., Hua, X., Chen, Z., Wang, X., & Song, G. (2019). Modeling, simulation, and validation of a pendulum-pounding tuned mass damper for vibration control. Structural Control and Health Monitoring, 26(4), e2326. https://doi.org/10.1002/stc.2326
Wang, W., Hua, X., Wang, X., Wu, J., Sun, H., & Song, G. (2019). Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system. Structural Control and Health Monitoring, 26(1), e2280. https://doi.org/10.1002/stc.2280
Wang, W., Yu, T., Yang, Z., Zhang, H., & Hua, X. (2023). A Double-Tuned Pendulum Mass Damper Employing a Pounding Damping Mechanism for Vibration Control of High-Rise Structures. Structural Control and Health Monitoring, 2023(1), 7686917. https://doi.org/10.1155/2023/7686917
Xiao, J., Wang, C., Wang, C., Ding, T., & Singh, A. (2019). A comparative study on nonlinear damping behaviors of precast and cast-in-situ recycled aggregate concrete frames. IOP Conference Series: Earth and Environmental Science, 323(1), 012135. https://doi.org/10.1088/1755-1315/323/1/012135
Zhang, L., Zhang, L., & Xie, Z. (2022). Hydrodynamic characteristics and application of tuned liquid dampers with internal damping devices. The Structural Design of Tall and Special Buildings, 31(14), e1968. https://doi.org/10.1002/tal.1968
Zhou, X. Q., Yu, D. Y., Shao, X. Y., Zhang, S. Q., & Wang, S. (2016). Research and applications of viscoelastic vibration damping materials: A review. Composite Structures, 136, 460–480. https://doi.org/10.1016/j.compstruct.2015.10.014
Refbacks
- There are currently no refbacks.






