Applications of holonomic and non-holonomic constraints in modern technological innovations: systematic review

Melinda Maharani, Selvia Mariska Syahputri, Eka Sutinah, Hamdi Akhsan, Ismet Ismet

Abstract

Kendala holonomik dan nonholonomik merupakan aspek penting mekanika geometri yang banyak diaplikasikan dalam teknologi modern seperti navigasi, robotika, dan kendaraan otonom. Penelitian ini bertujuan untuk menjawab dua pertanyaan utama: (1) Bagaimana kendala holonomik dan nonholonomik didistribusikan dalam bidang teknologi modern? dan (2) Bagaimana kendala ini berkontribusi pada efisiensi dan kinerja sistem? Metode yang digunakan adalah Tinjauan Literatur Sistematis (SLR) yang mengikuti pedoman PRISMA 2020. Literatur dikumpulkan menggunakan perangkat lunak Publish or Perish dari basis data Scopus, ScienceDirect, dan Google Scholar, dengan kata kunci tertentu. Dari 165 artikel yang awalnya ditemukan, 32 artikel dipilih untuk analisis akhir setelah penyaringan, penghapusan duplikat, dan evaluasi kualitas dan pengindeksan. Hasil analisis menunjukkan penerapan kendala nonholonomik yang dominan dalam sistem dinamis seperti robot penggerak diferensial dan kendaraan otonom karena kemampuannya untuk meningkatkan fleksibilitas dan kemampuan beradaptasi. Sebaliknya, kendala holonomik lebih umum digunakan dalam sistem presisi tinggi seperti robot omnidirectional. Implikasi dari penelitian ini menekankan pentingnya memilih jenis kendala yang tepat untuk mengoptimalkan kinerja teknologi berbasis mekanika geometri.

Keywords

holonomic constraints, non-holonomic constraints, robotics, autonomous vehicles, navigation

Full Text:

PDF

References

Alireza, M., Vincent, D., & Tony, W. (2021). Experimental study of path planning problem using EMCOA for a holonomic mobile robot. Journal of Systems Engineering and Electronics, 32(6), 1450–1462. https://doi.org/10.23919/JSEE.2021.000123

Aminullah, R. F., Arif, M. R., Negeri Surabaya, U., Ketintang, J., Gayungan, K., Surabaya, K., & Kolaboratif Sains, J. (2023). Analisa Lagrange Pada Dinamika Stroller Non-Holonomic Berbasis Komputasi Fisika Lagrange Analysis Of Non-Holonomic Stroller Dynamics Based On Computational Physics. Jurnal Kolaboratif Sains (JKS), 6, 749–756. https://jurnal.unismuhpalu.ac.id/index.php/JKS

Amperawan, Andika, D., Anisah, M., & Marcelinus. I. J. (2022). Sistem Deteksi Posisi Dan Pengambilan Bola Pada Robot Sepak Bola. Jurnal Ampere. https://doi.org/10.31851/ampere

Ariska, M., Akhsan, H., & Muslim, M. (2020). Dynamic Analysis of Tippe Top on Cylinder’s Inner Surface with and Without Friction based on Routh Reduction. Journal of Physics: Conference Series, 1467(1). https://doi.org/10.1088/1742-6596/1467/1/012040

Aydın, G. D., Doğan, D., & Türken, Y. T. (2024). Lyapunov-based Controller Design for Precise Monitoring, Speed Control and Trajectory Planning in Autonomous Tractors with Trailers. 2024 32nd Signal Processing and Communications Applications Conference (SIU), 1–4. https://doi.org/10.1109/SIU61531.2024.10600765

Bashabsheh, M. (2024). Autonomous Robotic Systems with Artificial Intelligence Technology Using a Deep Q Network-Based Approach for Goal-Oriented 2D Arm Control. Journal of Robotics and Control (JRC), 5(6), 1872–1887. https://doi.org/10.18196/jrc.v5i6.23850

Bayram, A., Almalı, M. N., & Al-naqshbandı, F. M. (2022). Bir insansız kara aracının model öngörü kontrol metodu ile GPS tabanlı yol takibi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 345–356. https://doi.org/10.17341/gazimmfd.1024463

Bingöl, O., & Uzun, E. (2021). İki Tekerlekli Denge Araçları İçin Geribeslemeli Doğrusallaştırma Tabanlı Denetleyici Tasarımı. Uluslararası Teknolojik Bilimler Dergisi, 13(2), 69–80. https://dergipark.org.tr/en/pub/utbd/issue/67952/1013360

Cheng, S., Cheng, J., Zang, N., Cai, J., Fan, S., Zhang, Z., & Song, H. (2023). Adaptive non-holonomic constraint aiding Multi-GNSS PPP/INS tightly coupled navigation in the urban environment. GPS Solutions, 27(3), 152. https://doi.org/10.1007/s10291-023-01475-9

Choudhary, A., Kobayashi, Y., Arjonilla, F. J., Nagasaka, S., & Koike, M. (2021). Evaluation of mapping and path planning for non-holonomic mobile robot navigation in narrow pathway for agricultural application. 2021 IEEE/SICE International Symposium on System Integration (SII), 17–22. https://doi.org/10.1109/IEEECONF49454.2021.9382767

Firdaus, R. aminullah, Rahmatullah, M. A., Dzulkiflih, & Khoiro, M. (2023). Analisa Lagrange pada Dinamika Stroller Non-Holonomic Berbasis Komputasi Fisika. Jurnal Kolaboratif Sains, 6(7), 749–756. https://doi.org/https://doi.org/10.56338/jks.v6i7.3831

Gulo, S. I. C., Kontrol, P., & Tamba, T. A. (2021). Perancangan Kontrol Pelacakan Lintasan untuk Robot Otonom Bergerak Beroda dengan Penggerak Diferensial (Design of Trajectory Tracking Controller for Differential-Drive Autonomous Wheeled Mobile Robots). In Jurnal Nasional Teknik Elektro dan Teknologi Informasi | (Vol. 10, Issue 3).

Hadi, M. (2022). Dasar-Dasar Mekanika Klasik. Euler. https://osf.io/vugz6/download

Imamoglu, M. R., Sumer, E., & Temeltas, H. (2023). A Comparison of Local Planner Algorithms for a ROS-based Omnidirectional Mobile Robot. 2023 8th International Conference on Robotics and Automation Engineering (ICRAE), 26–30. https://doi.org/10.1109/ICRAE59816.2023.10458649

Johnson, J. J., Li, L., Liu, F., Qureshi, A. H., & Yip, M. C. (2020). Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6937–6943. https://doi.org/10.1109/IROS45743.2020.9341283

Kibar, A., Gürkal, A. E., Özer, E., & İnner, A. B. (2024). Diferansiyel Sürüşlü Otonom Mobil Robotların Avare Teker Kaynaklı Sapmaların İncelenmesi. Politeknik Dergisi, 27(3), 947–955. https://doi.org/10.2339/politeknik.1104014

Kurnia, H. (2023). Pemanfaatan Sensor Ldr Pada Robot Light Follower Dengan Konsep Holonomic Sebagai Media Pembelajaran. Jurnal Mahasiswa Teknik Informatika, 7(1).

Li, H., Liu, Z., Li, C., Zheng, Y., Tong, S., Chen, S., & Gou, W. (2024). Non-holonomic constraint-assisted GNSS/SINS tight integration navigation method based on a left-invariant extended Kalman filter. Measurement Science and Technology, 36. https://doi.org/10.1088/1361-6501/ad9161

Li, X., Li, H., Huang, G., Zhang, Q., & Meng, S. (2023). Non-holonomic constraint (NHC)-assisted GNSS/SINS positioning using a vehicle motion state classification (VMSC)-based convolution neural network. GPS Solutions, 27(3), 144. https://doi.org/10.1007/s10291-023-01483-9

Manullang, M. J. C., Hardhienata, M. K. D., & Priandana, K. (2020). Kendali Robot Beroda Otonom dengan Invers Kinematics Autonomous Wheeled Robot Control with Inverse Kinematics. Jurnal Ilmu Komputer Agri-Informatika. http://journal.ipb.ac.id/index.php/jika

Mısır, O., & Gökrem, L. (2020). Sürü Robotları için Esnek ve Ölçeklenebilir Toplanma Davranışı Metodu. Avrupa Bilim ve Teknoloji Dergisi, 100–109. https://doi.org/10.31590/ejosat.779162

Ouach, M. K., & Eren, T. (2021). Mobil Robotların Formasyon Kontrolünde Giriş Kısıtlamaları. International Journal of Engineering Research and Development, 13(2), 680–689. https://doi.org/10.29137/umagd.908696

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71

Rahmani, B., Alfarizi, A., Agus Wahyudi, M., Ilmi, Miftahuddin, Melyana, & Mahrita. (2023). Real-time Multi-Level Wireless Control Model based on IoT for Wheeled Robots. Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 12. https://doi.org/10.35889/jutisi.v12i3.1586

Riger, S., & Sigurvinsdottir, R. (2016). Handbook Of Methodological Approaches To Community-Based Research (pp. 39–41). Oxford University Press. https://academic.oup.com/book/1038

Rosyid, M. F. (2011). Tentang Sistem Mekanik Dengan Kendala Tak Holonomic. Jurnal Fisika Unnes, 1(1). https://doi.org/10.15294/jf.v1i1.1649

Sun, W., & Yang, Y. (2020). BDS PPP/INS Tight Coupling Method Based on Non-Holonomic Constraint and Zero Velocity Update. IEEE Access, 8, 128866–128876. https://doi.org/10.1109/ACCESS.2020.3008849

Todorov, E. (2014). Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in MuJoCo. IEEE International Conference on Robotics & Automation (ICRA) Hong Kong Convention and Exhibition Center, 6054–6061. https://doi.org/10.1109/ICRA.2014.6907751

Wang, Z., Liu, J., Jiang, J., Wu, J., Wang, Q., & Liu, J. (2025). An Adaptive Combined Filtering Algorithm for Non-Holonomic Constraints with Time-Varying and Thick-Tailed Measurement Noise. Remote Sensing, 17(7). https://doi.org/10.3390/rs17071126

Wu, J., Chong, W., Holmberg, R., Prasad, A., Gao, Y., Khatib, O., Song, S., Rusinkiewicz, S., & Bohg, J. (2024). TidyBot++: An Open-Source Holonomic Mobile Manipulator for Robot Learning. https://doi.org/10.48550/arXiv.2412.10447

Xiao, Y., Luo, H., Zhao, F., Wu, F., Gao, X., Wang, Q., & Cui, L. (2021). Residual Attention Network-Based Confidence Estimation Algorithm for Non-Holonomic Constraint in GNSS/INS Integrated Navigation System. IEEE Transactions on Vehicular Technology, 70(11), 11404–11418. https://doi.org/10.1109/TVT.2021.3113500

Yang, Z., Li, Z., Liu, Z., Wang, C., Sun, Y., & Shao, K. (2021). Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation. Measurement Science and Technology, 32(10), 105110. https://doi.org/10.1088/1361-6501/ac0370

Yunardi, R. T., Arifianto, D., Bachtiar, F., & Prananingrum, J. I. (2021). Holonomic implementation of three wheels omnidirectional mobile robot using DC motors. Journal of Robotics and Control (JRC), 2(2), 65–71. https://doi.org/10.18196/jrc.2254

Yuniawan, A., Rois, M., Sulistijono, I. A., Barakbah, A., & Arief, Z. (2021). Sistem Navigasi dari Holonomic Mobile Robot untuk Membantu Tenaga Kesehatan dalam Pengiriman Logistik kepada Pasien. INOVTEK Polbeng - Seri Informatika, 6, 170. https://doi.org/10.35314/isi.v6i2.1989

Zhang, Q., Hu, Y., & Niu, X. (2020). Required lever arm accuracy of non-holonomic constraint for land vehicle navigation. IEEE Transactions on Vehicular Technology, 69(8), 8305–8316. https://doi.org/10.1109/TVT.2020.2995076

Zhang, X., & Yang, J. (2024). An Adaptive Robust EKF Based on Mahalanobis Distance and Non-Holonomic Constraints for Enhancing Vehicle Positioning Accuracy. IEEE Sensors Journal, 24(9), 14586–14595. https://doi.org/10.1109/JSEN.2024.3373828

Refbacks

  • There are currently no refbacks.