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Abstract: This research develops a low-cost demonstration kit that aims to 

facilitate understanding of the concept of determining the active region of an 

X-ray detector using a phototransistor. This demonstration kit provides a 

practical and effective tool for illustrating the basic principles of X-ray 

detection, focusing on the phototransistor as the main component. The 

research method includes designing an electronic circuit capable of converting 

changes in light received by a phototransistor into an electrical signal that can 

be measured. The interaction of X-rays with matter can produce fluorescence 

phenomena that emit visible light. This phenomenon is utilized to design a 

phototransistor-based X-ray detector by attaching a ZnS (Ag) fluorescent 

screen to the surface of a phototransistor arranged in a Darlington circuit. The 

measurement of the active area of the detector was carried out by collimating 

the x-ray beam from a 2000-watt Philips x-ray generator tube, 60 kV type PW 

2215/20 NR 780026, and measuring the output voltage of the detector (Vout) 

every 1 mm the change in beam position horizontally or vertically. The 

experimental results show that the Darlington circuit can be applied to design 

phototransistor-based X-ray detectors. The detector's active area irradiated 

with x-rays was obtained at (3.5 ± 0.5) mm horizontally and (3.3 ± 0.5) mm 

in the vertical direction. The results validate the phototransistor's response to 

X-rays and provide a clear illustration of how the active region of the detector 

can be identified and measured. 

Keywords: Detector; Phototransistor; X-ray; Screen ZnS (Ag).. 

1.  Introduction 

X-ray wavelengths and energies range from 0.01 nm to 10 nm, making them useful for 

medical diagnosis and therapy (Wang & Gu, 2022). CT scans measure the distribution of 

X-ray absorption coefficients, with the intensity measured by the detector. The number 

of detectors on a CT scan is determined by its generation (Nicholls et al., 2017). The first 

generation used parallel beam scanning, while the second generation had arrays facing a 
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single source (Marques et al., 2022). The third generation had detectors in concentric arcs, 

reducing data acquisition time (Bhowmik, 2011). The fourth generation had fixed sources 

and detectors mounted on rings, allowing for accurate distance measurements 

(Rambhujun et al., 2020). Gas-filled detectors, such as the Ionization Detector and Geiger 

Muller Detector (Chaiwongkhot et al., 2022), are commonly used but have large 

dimensions and low efficiency (Zhong et al., 2021). Semiconductor detectors offer 

advantages such as linear response (Prayogi, Cahyono, & Darminto, 2022), negligible 

energy absorption (Zhihong et al., 2022), excellent energy resolution (Prayogi et al., 

2023), pulse formation (Scharenberg et al., 2022), fast rise time (Nagata et al., 2022), and 

small detector size (Prayogi, Asih, et al., 2022). 
X-rays can ionize atoms in materials, causing fluorescence symptoms. A light detector 

is used to detect X-rays, such as a phototransistor made of p-n semiconductor material 

(Darminto et al., 2023). Phototransistors are more sensitive to changes in light, making 

them ideal for detecting X-rays (Manning et al., 2021). A fluorescent screen, such as 

Silver-Activated Zinc Sulfide (ZnS(Ag), is sensitive to x-rays and can emit high-

frequency electromagnetic waves (Costa & Muleri, 2014). The detector can measure the 

output in current or voltage. To digitize the output, an ADC (Analog to Digital Converter) 

is used to convert the analog signal into a digital value (Hamdani et al., 2022). A smaller 

3 mm phototransistor is used in this study, as it has a higher sensitivity compared to a 

photodiode and can be used as an X-ray detector in CT scans. The study aims to determine 

the active region of the phototransistor near the ZnS(Ag) fluorescent screen, which could 

potentially be applied to X-ray detectors in Computed Tomography (CT) scans. 
This study focuses on precise dose evaluation using a commercial phototransistor as a 

radiation detector for X-ray doses in the diagnostic range (Benali et al., 2022). The circuit 

is designed to change the electric field within the phototransistor (Hu et al., 2022), 

allowing for a response from a specified range of photon energies (Yadav et al., 2021). 

The method is tested using a radiation beam from the Pantak HF-160 X-ray unit and 

compared to the usual dosimetry method (Scisciò et al., 2022). 

2.  Experimental Method 

The research was conducted at the Pertamina University Physics Laboratory, Jakarta. 

The materials needed are ZnS (Ag) as a fluorescent screen, a 2N2369 transistor, and a 3 

mm phototransistor. The equipment used includes an x-ray generator from a Shimadzu 

XD-300 XRD tool complete with a generator transformer and a Shimadzu CWK-3500 

cooling system. A 2000-watt, 60 kV Philips x-ray generator tube with PW type 2215/20 

NR.780026. Surveimeter, 10-bit Analog to Digital Converter found on Arduino UNO R3, 

and Computer (PC) functions to write programs and display analog data results which are 

converted into digital form using ADC. The circuit used in the study is shown in Figure 

1.  
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Figure 1. The schematic darlington Type Circuit. 

This circuit is used to design a phototransistor detector that is brought closer to the 

ZnS (Ag) fluorescent screen to detect x-rays with an output in the form of a voltage (Vout) 

which is then connected to the ADC to convert analog values into digital values. The 

designed detector consists of a ZnS (Ag) fluorescent screen which is placed close to the 

face of the phototransistor (Prayogi et al., 2019). This detector then measures the active 

area horizontally and vertically by scanning it using a single X-ray beam (pencil beam). 

The voltage and current of the filament in the X-ray generator are kept constant and the 

position of the detector changes by 1 mm for each scan. The output of the detector in the 

form of voltage (Vout) is measured and displayed on a computer screen (PC), as illustrated 

in Figure 2. 

 
Figure 2. Illustration of measuring the active area of an X-ray detector. 
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3.  Results and Discussion  

Data from the experimental results of the active area of the detector horizontally are 

shown in Table 1 and vertically shown in Table 2. Table 1 explains that the lowest value 

is (114.3 ± 0.2) mV at the 0 mm position, while the highest value is (417.8 ± 3) mV at the 

8 mm position, that is, in the mid-range. These results are then plotted in the form of a 

graph of the relationship between the distance between the horizontal detector faces and 

the value of the output voltage at the detector shown in Figure 3. 

 
Figure 3. The relationship between the beam position (mm) and the detector output 

(mV) in the horizontal direction 

Table 1. Results of measuring the active area of the detector horizontally. 

Number X-Ray Beam Position (mm) Detector Output Voltage (mV) 

1 0 114.3 ± 0.2 

2 1 117.2 ± 0.2 

3 2 121.6± 0.2 

4 3 123.7 ± 0.5 

5 4 125.8 ± 0.2 

6 5 138.7 ± 0.2 

7 6 264.3 ± 0.2 

8 7 390.3 ± 1 

9 8 417.8 ± 3 

10 9 401.5 ± 5 

11 10 273.4 ± 4 

12 11 148.8 ± 1 

13 12 137.4 ± 1 

14 13 127.1 ± 0.3 

15 14 123.2 ± 0.3 

16 15 120.8 ± 2 
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Figure 3 shows the relationship between the detector position (mm) and the detector 

output voltage (mV) horizontally, explaining that the experimental results are normally 

distributed. The FWHM (Full Width at Half Maximum) value is 3.5 mm, this value 

describes the active area of the phototransistor detector after the ZnS (Ag) fluorescent 

screen is brought closer to the horizontal direction, namely (3.5 ± 0.5) mm. The ZnS (Ag) 

fluorescent screen plays an important role in the detector (Prayogi et al., 2017), namely 

when the detector that has been installed with a fluorescent screen interacts with x-rays it 

will produce fluorescence phenomena which produce visible light in the range of violet 

light (Prayogi et al., 2021). 

Table 2 is the result of measuring the active area of the phototransistor detector 

vertically, measurements are made repeatedly to get better measurement results. The x-

ray beam that hits the detector area is collimated so that the resulting x-ray is in the form 

of a single beam (pencil beam), this is done so that the measured detector output voltage 

is correct from the area (point) being tested by 1 mm. The lowest value is (112.7 ± 0.3) 

mV at the 0 mm position and the highest value is at the 8 mm position, namely (397.6 ± 

12.7) mV. These results are then plotted in the form of a relationship between the position 

of the detector and the output voltage of the phototransistor detector, shown in Figure 4. 

Figure 4 shows the relationship between the position of the detector (mm) and the 

output voltage of the vertical direction of the phototransistor detector (mV) that has been 

developed. The experimental data were normally distributed with the highest value (397.6 

± 12.7) mV. From Figure 5.4, we get a variance of 1.42 so the FWHM value obtained is 

(3.3 ± 0.5) mm, which is the active region of the vertical phototransistor detector. The 

diameter of the phototransistor (3 ± 0.25) mm which is brought closer to the ZnS (Ag) 

fluorescent screen with a thickness of 1 mm can produce a large enough output voltage 

from mV to V (Naseer et al., 2022). The active region is along the diameter of the detector 

and the response of the detector is linear when irradiated with X-rays it is a hope of 

success if this detector is applied to detect x-rays, especially in the CT-scan field which 

requires many detector arrays (Rattyananda et al., 2022). However, testing the detector's 

response to X-rays still needs to be done by constructing a detector array consisting of 

several phototransistors (Schreiner et al., 2009). To implement a phototransistor detector 

as a detector array (Neubüser et al., 2022), it is necessary to test the detector's response 

to x-rays that have passed through materials with different homogeneity so that in the end 

it is expected that phototransistors can be applied to the CT-scan field (Nazhmudinov et 

al., 2022). 
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Figure 4. Relationship between beam position (mm) and Detector Output (mV) in the 

vertical direction. 

Table 2. Results of measuring the active area of the detector vertically. 

Number X-Ray Beam Position (mm) Detector Output Voltage (mV) 

1 0 112.7 ± 0.3 

2 1 116.1 ± 0.2 

3 2 120.5 ± 0.6 

4 3 124.1 ± 0.1 

5 4 126.5 ± 1.4 

6 5 134.9 ± 0.3 

7 6 260.1 ± 0.6 

8 7 378.1 ± 0.4 

9 8 397.6 ± 12.7 

10 9 312.0 ± 0.4 

11 10 222.1 ± 0.5 

12 11 138.7 ± 0.2 

13 12 131.1 ± 0.2 

14 13 127.2 ± 2 

15 14 125.4 ± 0.3 

16 15 122.8 ± 0.5 

The low-cost demonstration kit developed in this research successfully illustrates the 

concept of X-ray detection using phototransistors. In these results it was also found that 

Phototransistor Response Validation: The calibration experiment succeeded in validating 

the phototransistor response to X-rays. The results show that phototransistors can convert 

changes in X-ray intensity into electrical signals that can be measured well (Prayogi, 

Cahyono, Hamdani, et al., 2022). Detector Active Region Illustration: This demonstration 

kit is effective in illustrating how the active region of an X-ray detector can be identified 

and measured (Beavers et al., 2022). This demonstration allows users to see changes in 
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phototransistor response with changes in position or X-ray intensity. Educational Use: 

This kit has great potential in teaching and understanding X-ray detection concepts. In an 

educational context, this kit can be used as a tool to educate students about the basic 

principles in X-ray detection. Potential Use in Research: This demonstration kit also has 

potential in scientific research. Users working in related fields can use this kit to illustrate 

or validate basic principles in their experiments (Dong et al., 2022). 

This research makes an important contribution to the development of a low-cost 

demonstration kit for X-ray detection using phototransistors. This kit can help educate 

and increase understanding of X-ray detection technology (Arratia et al., 2022), both in 

educational and scientific research contexts. This kit also allows greater accessibility to 

this understanding, given its low cost. However, there are several considerations that need 

to be considered. First, in the context of the use of X-ray sources, radiation safety is very 

important (Choi et al., 2022). Users of this kit must comply with all applicable rules and 

regulations regarding the use of X-rays. Second, the kit needs to be adapted to the type of 

X-ray detector used in the experiment (D’Andrea et al., 2022). Finally, further research 

could develop this kit by adding additional features or more complex options for a deeper 

understanding. 

4.  Conclusion 

In summary, the phototransistor detector which is approached by the ZnS (Ag) 

fluorescent screen has an active area of (3.5 ± 0.5) mm in the horizontal direction and (3.3 

± 0.5) mm in the vertical direction and can produce a large enough output voltage of mV 

to V. The designed detector can detect X-rays with good capabilities. This research 

succeeded in developing a low-cost demonstration kit for determining the active region 

of an X-ray detector using a phototransistor. This kit is effective in illustrating the basic 

principles in X-ray detection and can be used in education as well as scientific research. 

The development of such kits is important to increase understanding of X-ray detection 

technology and make it more accessible to a wide range of audiences. This kit also has 

the potential for further development with more advanced features according to user 

needs. 
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