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Abstract: This research aims to develop a numerical method that can 

accurately estimate the relationship between cosmic energy (E) and the 

expansion rate of the universe (H), taking into account the complex 

interactions between ordinary matter, dark matter, and dark energy. 

Numerical approaches based on Euler, Runge-Kutta, and Adams-Bashforth 

integration methods will be refined to evaluate the correlation. The limitation 

of this study is to a flat universe (k = 0 geometry), but it has the potential to 

be extended to other geometries. This effective numerical method can 

revolutionize cosmology by allowing accurate testing of cosmological 

theories and improving predictive capabilities. This study not only deepens 

our understanding of the behavior of the universe, but also opens up 

opportunities for further exploration. While there has been research on the 

Friedmann equation and the evolution of the universe, this study fills the gap 

by comparing three numerical methods, promising a more comprehensive 

and accurate analysis. This research demonstrates significant advances in 

cosmological methodology, with the potential to change the cosmological 

paradigm through efficient numerical approaches. By improving the 

understanding of cosmic energy and the expansion rate of the universe, this 

research not only contributes to the current knowledge of cosmology, but 

also paves the way for impactful follow-up research in this field. 

Keyword: Numerical method; Cosmic energy; Expansion rate; Cosmology; 

Dark matter. 

1.  Introduction 

In previous cosmological research, scientists have examined the role of the 

Friedmann equation in modeling the evolution of the universe  (Chavanis, 2014; 

Nemiroff & Patla, 2008; Ren & Meng, 2006). This equation, first introduced by 

Alexander Friedmann in 1922, provides a mathematical framework for understanding 

how parameters such as the expansion rate of the universe (represented by the Hubble 

function) are related to various important components such as ordinary matter, dark 

matter, dark energy, and the geometry of the universe (Friedmann, 2014; Klimchitskaya 

& Mostepanenko, 2022). Previous research, such as that conducted by Edwin Hubble in 

1929 with observations of galaxies, has provided evidence that the universe is 
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expanding (Bahcall, 2015; Kirshner, 2004). Through the Friedmann equation, we can 

understand the evolution of the universe from the Big Bang to the present day (Carroll 

& Kaplinghat, 2002). However, to explore the role of each of these components in the 

evolution of the universe, numerical methods are needed that can estimate their values 

over time, as highlighted by recent research in cosmology. 

This research aims to develop a numerical method that can estimate the relationship 

between cosmic energy (E) and the expansion rate of the universe (H) with greater 

accuracy in physics. Through this research, we hope to gain a deeper insight into how 

various components, such as ordinary matter, dark matter and dark energy, affect the 

development of the universe. This will improve our understanding of the dynamics of 

the Universe and provide a solid foundation for further research in cosmology. 

This research will focus on improving three numerical approaches to project the 

correlation between cosmic energy (E) and the expansion rate of the universe (H), 

namely by using the Euler integration method, the Runge-Kutta method, and the 

Adams-Bashforth method (Biswas et al., 2013; Butcher, 2007; Durran, 1991). This 

research will be limited to the context of a flat universe (k = 0 geometry) to simplify the 

analysis, although this approach has the potential to be extended to consider diverse 

geometries. 

The development of effective numerical methods for modeling the evolution of the 

universe can have far-reaching impacts in the field of cosmology. With a more accurate 

and efficient approach, this research can help cosmologists to test and verify existing 

theories, as well as better predict the behavior of the universe. It can also open the door 

for further research in understanding the nature of the universe. The development of 

effective numerical methods to model the evolution of the universe has the potential to 

change the paradigm in cosmology. With a more precise and efficient approach, this 

research allows cosmologists to test and confirm existing theories, as well as improve 

their ability to predict the behavior of the universe. The application of this method also 

paves the way for further research in deepening our understanding of the nature of the 

universe. 

Although many studies have been conducted on the Friedmann equation and the 

evolution of the universe, there is still a need to develop more accurate and efficient 

numerical methods to estimate the relationship between cosmic energy and the 

expansion rate of the universe. Some studies have neglected some important aspects or 

used inappropriate approaches, so there are gaps in the research that can be filled by this 

study. 

This research is unique in that it involves the development and comparison of three 

different numerical methods for estimating the relationship between cosmic energy and 

the expansion rate of the universe. This approach allows for a more in-depth analysis of 

the dynamics of the universe and produces more accurate results compared to previous 

methods. Therefore, this research has the potential to be an important contribution to the 

field of cosmology. 
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2.  Research Method 

2.1.  Friedmann Equation in Cosmology 

Knowing that ( )0H  is the Hubble function at the present time ( )0t , we can write the 

Friedmann equation as follows in (1): 

2

0 0 2

0

8

3 3

G k
H

a





= − +  

(1) 

In physics, ( )0H  is a parameter known as the Hubble current parameter. It indicates 

the rate at which the universe is expanding at the moment. The larger the value of ( )0H

, the faster our universe is expanding. (G) is Newton's gravitational constant, a 

fundamental value in physics, which is responsible for the gravitational force between 

objects in the universe. 0( )  is the average energy density of the universe at this point 

in time. It includes all forms of energy, including ordinary matter, dark matter, and dark 

energy (Turner, 2000). (k) is a parameter that determines the geometry of the universe. 

Positive values indicate a closed universe (spherical geometry), negative values indicate 

an open universe (hyperbola geometry), and zero values indicate a flat universe 

(Cornish & Weeks, 1998). ( 0a ) is the scale factor of the universe at this point in time, 

which indicates how much the universe has expanded since the Big Bang relative to its 

size at that time. ( )  is the cosmological constant, also known as dark energy or the 

cosmological constant. This constant describes the acceleration of the expansion of the 

universe. Note that  ( )t  has the form 0( ) , which is the energy density at the present 

time: 
3
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substitution  ( )t  into Friedmann equation: 
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From the above equation, we can divide both sides of the equation by 2

0( )H : 
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(4) 

This equation divides the square of the Hubble parameter at time (t) by the square of 

the current Hubble parameter (H0), providing an understanding of the expansion rate of 

the universe at time (t) relative to the current expansion rate (Moresco et al., 2012). On 

the top right, there is a term that reflects the contribution of the average energy density 

of the universe 0( ) , which includes various forms of energy such as ordinary matter, 

dark matter and dark energy (Sahni, 2004). This term is affected by the scale factor of 

https://dx.doi.org/10.20961/jphystheor-appl.v8i1.82991


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 8 No. 1 (2024) 49-66 doi: 10.20961/jphystheor-appl.v8i1.82991 

 

52 A comparative study of numerical methods for estimating …  

 

the universe  ( )a t , indicating how much the universe has grown since the Big Bang. 

The larger  ( )a t  is relative to  0a , the greater the contribution of this term to the 

expansion rate of the universe. On the bottom right, there is a term related to the 

geometry parameter of the universe (k), determining whether the universe is closed (k > 

0), open (k < 0), or flat (k = 0) (Melia & Shevchuk, 2012). This term changes over time 

due to changes in  ( )a t . There is also a term related to the cosmological constant ( ) , 

representing the dark energy or cosmological constant that affects the acceleration or 

deceleration of the expansion of the universe (S. Turner & Huterer, 2007): 

0

2

0

8

3
m

G

H

 
 =  

(5) 
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0 0

k

k

a H
 = −  
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2

03H



 =  

(7) 

These physical equations provide a mathematical interpretation of the relative roles 

of various components in the universe to the evolution and geometry of the universe. 

The equation for the matter density parameter ( )m  is obtained by dividing 8πGρ₀ by 

3H₀², where G is the gravitational constant, ρ₀ is the average energy density of the 

universe at this time, and H₀ is the current Hubble parameter. The interpretation is that 

the larger the value of ( )m , the greater the contribution of matter to the total energy in 

the universe, resulting in a slowdown in the expansion rate of the universe (Frautschi, 

1982). The equation for the critical density parameter ( )k  is calculated by dividing -k 

by 2 2

0 0( )a H , where k is a parameter of the geometry of the universe that determines 

whether the universe is closed (k > 0), open (k < 0), or flat (k = 0). The interpretation is 

that the value of  ( )k  indicates how far the geometry of the universe differs from a flat 

state, with positive values indicating a closed universe, negative values indicating an 

open universe, and zero values indicating a flat universe (Bahcall et al., 1999). The 

equation for the dark energy parameter ( )  is obtained by dividing Λ by 3H₀², where 

Λ is the cosmological constant. The interpretation is that the larger the value of ( ) , 

the greater the contribution of dark energy or cosmological constant to the total energy 

in the universe, which causes the accelerated expansion of the universe (Frieman et al., 

2008): 
3 22

0 0
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0

( )

( ) ( )
m k

a aH t

H a t a t


   
=  + +   

   
 

(8) 

The term  
3

0 ( )/m a a t  describes the contribution of matter to the overall energy of 

the universe, with m  as an index of the density of matter. The factor  
3

0 / ( )a a t  

reflects the decrease in matter density as space expands. The term  
2

0 ( )/k a a t  
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represents the impact of geometry on the total energy, governed by 
k  as the critical 

density parameter. The factor  
2

0 / ( )a a t  evaluates the effect of geometry on the space-

time of the universe. The term   reflects the role of dark energy or cosmological 

constant in the overall energy of the universe. The value of   describes the degree of 

dark energy contribution to the accelerated expansion of the universe. This equation is 

similar to the general form of the Friedmann equation. Rewritten as 

( ) ( ) ( )2 2 3 2 2 2 2 2 2 2

0 0 0 0 0 0( ) 8 3 (1 ) 16 3 (1 ) // 3/H z G H z G a H z H   = + +  + +  , where (z) is 

the redshift, we get the equation: 
2

3 2

2

0

( )
(1 ) (1 )m k

H z
z z

H
=  + + + +  

(9) 

This equation is the generalized form of the Friedmann equation in cosmology. 

 2 2

0( ) /H z H  is the ratio of the square of the Hubble function at redshift (z) to the 

squared value of the Hubble function at the present time (H0).  3(1 )m z +  is the 

contribution of ordinary matter (dark matter and stars) in the universe. As the universe 

expands, the density of this matter decreases, but the volume of the universe  3(1 )z+  

also increases, so the contribution of this material depends on cosmological parameters  

( )m  and scale factor  3(1 )z+ .  2(1 )k z +  is the contribution from the cosmological 

balance (radiation or dark matter). ( )k  is a parameter that determines the geometry of 

the universe (flat, closed, or open). Scale factor  2(1 )z+  include the effect of redshift 

on cosmological balance. The equation states that the rate of expansion of the universe 

at redshift (z) depends on the contributions of ordinary matter, cosmological balance 

and dark energy, each of which is determined by the cosmological parameter ( )m , 

( )k , and ( ).   

2.2.  Approximate Relationship Between Cosmic Energy (E) and Universe Expansion 

Rate (H) Through Taylor Series Approach 

To obtain an approximate relationship between (E) and (H), we will make some 

assumptions and approximations. We will assume that at this moment (z=0), the value 

of the Hubble function is (H0), and the energy function is (E0). We will use the Taylor 

approximation to expand the Friedmann equation around (z=0). The given equation is 

the Taylor expansion of the function (E(z)) around the point (z=0), which is the initial 

approach to approximating (E(z)) with a Taylor series up to second order (Baeza et al., 

2017). We can approximate the relationship between cosmic energy (E) and the 

expansion rate of the universe (H) by expanding (E(z)) in Taylor series around the point 

(z=0). Starting with a reminder of the Taylor expansion formula (Pourahmadi, 1984): 

2 3( ) ( )
( ) ( ) ( )( ) ( ) ( )

2! 3!

f a f a
f x f a f a x a x a x a

 
= + − + − + − + 

(10) 
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Define remainder ( ) nR x  of the Taylor expansion: 

2 3( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

2! 3!
n

f a f a
R x f x f a f a x a x a x a

  
= − + − + − + − + 

 
 

(11) 

( ) nR x  approaches zero as (n) approaches infinity. Use the remainder formula for the 

Taylor expansion (Poffald, 1990): 
( 1)

1( )
( ) ( )

( 1)!

n
n

n

f c
R x x a

n

+
+= −

+
 

(12) 

where (c) is between (x) and (a). This is known as the Peano remainder form of the 

Taylor remainder. Prove that ( ( ) 0)nR x →  at ( )n → . To prove this, we will use the 

Mean Value Theorem (MVT) (Smoryński, 2017). Suppose ( )x a , then there is a (c) 

between (a) and (x) such that: 
( 1)

( 1) ( )
( )

1!

n
n f c

f c
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+ =  
(13) 

Then: 
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| ( ) | ( )
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R x x a
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+
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(14) 

Because (x > a), so   0)( x a−  , and since (c) remains between (a) and (x), then 

( 1)(| ( ) |)nf c+  is constant. So, 

( 1)
1( )

| ( ) | | |
( 1)!

n
n

n

f c
R x x a

n

+
+= −

+
 

(15) 

( 1) ( )

( 1)!

nf c

n

+

+
 is constant because (c) is fixed. So, 

1| ( ) |  constan  | |nnR x x a +=  −  (16) 

When ( )n → , 1(| | )nx a +−  will be close to zero because ( )  1x a−   (because (x) is 

greater than (a)). Thus,  ( ) 0nR x →  at ( )n → . This proves that the remainder of the 

Taylor expansion approaches zero when ( )n → , which means that the Taylor 

expansion approaches the original function when ( )n → , corresponds to what is 

stated in the Taylor expansion formula (Makino & Berz, 2003). We will use the Taylor 

series to approximate the function (E(z)) around the point (z = 0). The Taylor series of a 

function (f(x)) around the point (x = a) is given by: 
2

2

2

1
( ) ( ) ( ) ( )

2
| |x a x a

df d f
f x f a x a x a

dx dx
= == + − + − +  

(17) 

We replace (x) with (z) and (a) with (0), so the Taylor series for (E(z)) around (z = 0) is: 
2

2

0 02

1
( ) (0)

2
| |z z

dE d E
E z E z z

dz dz
= == + + + 

(18) 

To get an approximate equation  2 2 3 2

0( ) / (1 ) (1 )m kH z H z z =  + + + +  by 

using the Taylor expansion of the function (E(z)), we need to first expand the function 
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to a sufficient order. We need to calculate the first and second derivatives of (E(z)) with 

respect to (z) at (z = 0) to obtain the corresponding coefficients. First derivative: 

2
2

0 02

2

0 02

1
( ) (0) | |

2

                  | |

z z

z z

dE d dE d E
E z E z z

dz dz dz dz

dE d E
z

dz dz

= =

= =

 
 = = + + + 

 

= + +

 

(19) 

We evaluate this first derivative at (z = 0), so that: 

0
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(0) |

| | 
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= =

 =
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(20) 

Second derivative: 

2 2
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z z
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d E d dE d E
E z z

dz dz dz dz

d E
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=
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(21) 

We evaluate this second derivative at (z = 0), so that: 
2

02
(0) |z

d E
E

dz
=

 =  (22) 

After obtaining the coefficients of the first and second derivatives, we can substitute 

them into the Taylor expansion of the function (E(z)). Then, using the Friedmann-

Lemaitre-Robertson-Walker (FLRW) equation for a flat universe, we will approximate 

the change in the expansion rate, (H(z)): 

0( ) ( )H z H E z=  (23) 

By substituting the found values into the equation  

 2 2 3 2

0( ) / (1 ) (1 )m kH z H z z =  + + + + , we can approximate the dynamics of the 

universe. In the context of the Taylor expansion, we get a more detailed picture of the 

evolution of the Hubble parameter (H(z)), defined as  

 2

0( ) (0) (0) 1/ 2 (0)H z H E E z E z  + +  . Therefore, 

2 2 2 2 2

0( ) [ (0) 2 (0) (0) (0) ]H z H E E E z E z  + +  (24) 

Substituting it into the FLRW equation, we get: 
2

3 2 2 2 2

2
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(1 ) (1 ) (0) 2 (0) (0) (0)m k

H z
z z E E E z E z

H


  + + + +   + +  
(25) 

Substitution 
,  ,  and m k   

, we get: 

2 2 2 3 20

2 2 2 2

0 0 0 0

8
(0) 2 (0) (0) (0) (1 ) (1 )

3 3

G k
E E E z E z z z

H a H H

  
 + +  + − + +  

(26) 

By comparing the coefficients on both sides of the equation, we can obtain approximate 

values of (E(0)), (E'(0)), and (E''(0)). We will use this approach to estimate the desired 
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equation. We analyze the coefficients on both sides of the equation. On the left side of 

the equation, we have: 
2 2 2(0) 2 (0) (0) (0)E E E z E z + +  (27) 

Coefficient for 
0( )z  is 

2( (0))E , for 
1( )z  is ( ) ( ) 2 0 ' 0E E , and for (z2) is 

2( (0) )E . On 

the right side of the equation, we have: 

3 20

2 2 2 2

0 0 0 0

8
(1 ) (1 )

3 3

G k
z z

H a H H
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+ − + +  

(28) 

Coefficient for 0( )z  is ( )2

0/ 3H , for 1( )z is ( )2

0 0/8 3G H  , and for 2( )z  is 

2 2

0 0( / )k a H− . We can balance the coefficients for each order (z) by comparing them. 

Then we will have a system of equations to determine (E(0)), (E'(0)), and (E''(0)).  

     2
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(0)
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E
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
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8
2 (0) (0)
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G
E E
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(30) 

         2

2 2

0 0

(0)
k

E
a H

 = −  
(31) 

From equation, we have: 

2

2

0

(0)
3

E
H


=  

(32) 

Since we want to find (E(0)), we can take the square root of both sides of the equation: 

2

0

(0)
3

E
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
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(33) 

From equation, we have: 
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8
2 (0) (0)

3

G
E E

H

 
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(34) 

We already know the value of (E(0)) from the previous step, so we can substitute it into 

the equation: 

0

2 2

0 0

8
2 (0)

3 3

G
E

H H

 
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(35) 

Then we solve for (E'(0)): 

0 0

1/2

4 4
(0)

3 3

G G
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   
 = =

 
 

(36) 

From equation, we have: 

2

2 2

0 0

(0)
k

E
a H

 = −  
(37) 

We already know the value of (E'(0)) from the previous step, so we can substitute it into 

the equation: 
2

0

2 21/2
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G k

a H
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(38) 

https://dx.doi.org/10.20961/jphystheor-appl.v8i1.82991


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 8 No. 1 (2024) 49-66 doi: 10.20961/jphystheor-appl.v8i1.82991 

 

R. C. Siagian  57 

 

Then we solve for (k): 
2 2 2

016

3

G
k

 
= −


 

(39) 

2.3.  Model matematika numerik  

2.3.1.  Euler integration method 

To use Euler's numerical integration method to solve such differential equations, the 

first step is to convert it into an integrable ordinary differential equation (ODE) (Cryer 

& Tavernini, 1972). This is done by dividing both sides of the equation by ( )2

0 / 3H  and 

replacing the variable  0( ) /  y H z H= . We get the differential equation: 

2 2 2
2 3 20 0
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8 16
( ) (1 ) (1 )

3 3 3

G G
y z z z

a

    
= + + + +


 

(40) 

We have a differential equation  / ( , )dy dz f z y= , where (f(z, y)) is a given 

function. To solve this differential equation, we will apply Euler's numerical integration 

method. We choose initial conditions, for example (z0 = 0) and ( ) 0 1y z = , because we 

want to solve for (H(z)) relative to (H0), so that at (z = 0), (H(z) = H0). Then, we choose 

a small step (h) to perform numerical integration. The iterative Euler formula used is: 

1 ( , )n n n ny y hf z y+ = +  (41) 

Where (yn) is the numerical solution at step (n), ( )nz  is the value of (z) at step (n), 

and (h) is the chosen integration step. We can calculate the numerical solution (y) 

iteratively by updating the value of (y) at each step using the derivative {f(z, y)} at the 

previous step: 

1 ( , )i i i iy y h f z y+ = +   (42) 

With this formula, we can calculate the (y) value at point ( )1 iz +  based on the (y) 

value at point (zi). This process is repeated until reaching the desired (z) value. After 

obtaining a series of (z) and (y) values, we can plot a result of {y(z)} to see how {H(z)} 

evolves along with (z). Using Euler's numerical integration method, we can calculate 

the value of {H(z)} relative to (H0) for various values of (z) according to the given 

differential equation. 

2.3.2.  Runge-kutta Method 

To solve this differential equation utilizing the Runge-Kutta method, we must first 

reconfigure it to resemble an ordinary differential equation (ODE) (Cryer & Tavernini, 

1972). The equation is the Friedmann equation, which delineates the universe's scale 

evolution in cosmology. To better align with conventional cosmological notation, we 

redefine the equation in terms of  ( ) ( ) / ( )H z a z a z= , where ( )a z  denotes the scale 

factor at time (t) relative to the redshift (z), and  ( )a z  represents the time derivative of 

the scale factor concerning the redshift. Utilizing this correlation, the Friedmann 
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equation can be reformulated into the structure of an ordinary differential equation as 

follows: 
2 2 2 2

3 20 0

2 2 2 2

0 0 0 0

8 16( ) 1
(1 ) (1 )

( ) 3 3 3

G Ga z
z z

a z H a H H

     
= + + + + 

 
 

(43) 

Define ( )x a=  and ( )y a= , so that we have a system of first-order differential 

equations: 
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(44) 

Now we can use the Runge-Kutta method of order 4 (RK4) to solve this system of 

ordinary differential equations numerically (Islam, 2015). RK4 is a commonly used 

numerical method for solving ordinary differential equations (Bakir & Mert, 2022). To 

start, we need to calculate (k1) and (l1) using the given equations: 

1k y=  (45) 
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(46) 

Calculate (k2) and (l2) using the (x) and (y) values generated from step 1: 

2 1
2

h
k y l= +  

(47) 
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(48) 

Calculate (k3) and (l3) using the (x) and (y) values resulting from step 2: 

3 2
2

h
k y l= +  

(49) 
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(50) 

Calculate (k4) and (l4) using the (x) and (y) values resulting from step 3: 

4 3k y hl= +  (51) 

2 2 2
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(52) 

Calculate the new (x) and (y) using the weighted average of (k)'s and (l)'s: 
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1 1 2 3 4( 2 2 )
6

n n

h
x x k k k k+ = + + + +  

(53) 

1 1 2 3 4( 2 2 )
6

n n

h
y y l l l l+ = + + + +  

(54) 

Continue steps 1-5 until reaching the desired endpoint. This is done by updating the 

(x) and (y) values at each iteration, and repeating the above steps until reaching the 

desired endpoint or the desired number of iterations. 

2.3.3.  Adams-Bashforth Method 

To apply the Adams-Bashforth Method in the context of the Friedmann cosmological 

equation, we need to transform the differential equation into a form that can be 

numerically integrated. The Friedmann equation in cosmology describes the evolution 

of the universe and can be represented in general form as a differential equation that 

depends on parameters such as the Hubble rate of change {H(z)} with respect to redshift 

(z): 

( )
( , ( ))

dH z
f z H z

dz
=  

(55) 

In cosmology, the Hubble parameter (H(z)) shows how fast the universe is expanding 

at a time (z), while the function [f{z, H(z)}] determines how this expansion rate 

depends on time and the energy density in the universe. Using the Adams-Bashforth 

Method, it can estimate the value of the Hubble parameter at the next time step ( )1nz +  

by considering the previous values  1( ), ( ),n nH z H z −  . This allows us to evaluate how 

the expansion of the universe evolves from one time step to the next by taking into 

account information from previous steps. This method helps in understanding the 

dynamics of the expanding universe in the context of changing time and energy density. 

The numerical steps to solve the Friedmann equation start by choosing the number of 

time steps (N) and time steps (dz), which depend on the desired level of accuracy as 

well as the range of red dependence (z) to be traced.  For example, if the goal is to 

integrate from (z=0) to max( )z z= , the values of (N) and (dz) are chosen such that this 

range is divided into small time steps. Before applying the Adams-Bashforth Method, 

an initial value {H(z0)} is required at (z0). This value can be determined based on the 

initial conditions given in the cosmological problem or can be obtained from previous 

calculations. The next step is to calculate the value of {H(z1)} using numerical methods 

such as the fourth-order Runge-Kutta method. This is done by solving the Friedmann 

differential equation at point (z1), which will then be the initial value for the Adams-

Bashforth Method iteration. After obtaining ( ) 0H z  and ( ) 1H z , the Adams-

Bashforth equation is used to calculate the value of ( ) 1nH z +  for each subsequent time 

step (n>1). This iterative equation takes into account the values of the function [f{z, 

H(z)] in the previous time steps to get an approximation of the value of ( ) 1nH z +  by 

using a predetermined formula: 
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(56) 

Where ( ) ,  f z H z 
   represents the function given in the Friedmann equation 

describing cosmological evolution. The iterative steps using the Adams-Bashforth 

Method are continued until reaching the last time step, (n = N), to obtain the numerical 

solution (H(z)) at the specified time steps (Zabidi et al., 2020). In a practical, after 

calculating the value of ( ) 1nH z +  using the Adams-Bashforth Method, it is important 

to update the value of ( )1nz +  and use the Friedmann equation to update ( ) 1nH z + , 

because the calculated value of ( ) 1nH z +  may not satisfy the Friedmann equation 

directly. This ensures the consistency of the numerical solution with the theoretical 

framework of cosmology given by the Friedmann equation. 

3.  Results 

3.1.  Influence of Cosmological Parameters in the Universe Expansion Rate 

Evolution Model 

In this research, the first step is to substitute the value of (k) into the ( )k  equation to 

obtain the value of ( )k . The substitution results in a new equation for ( )k , namely 

( )2 2 2 2 2

0 0 016 3/k G a H  =  . In terms of physics, it describes the relationship between 

cosmological parameters such as the universal gravitational constant (G), the average 

density of the universe ( 0 ), the cosmological constant ( ), as well as other parameters 

such as the current scale scalar 0a  and the current expansion rate (H0). The determined 

parameters, namely ( )k , ( ) , and ( )m , will be used to replace the variables in the 

cosmological equation. The equation for calculating the expansion rate of the universe, 

{H(z)}, relative to the current expansion rate, (H0), is given by: 
2 2 22

3 20 0

2 2 2 2 2

0 0 0 0 0

8 16( )
(1 ) (1 ) .

3 3 3

G GH z
z z

H H a H H

    
= + + + +


 

(57) 

Where (z) is the redshift, 0( )  is the current average matter density, (G) is the 

gravitational constant, and ( )  is the cosmological constant. 

3.2.  Test the Universe Expansion Rate Evolution Model using numerical methods 

3.2.1.  Euler numerical integration test 

In the code used, which can be seen in the figure below, we start by initializing 

physics parameters such as the Hubble constant 0( 70km/s/Mpc)H = , density parameter 

26 3

0( 1 10 kg/m ) −=  , gravitational constant 11 3 2( 6.674 10 m / kg/s )G −=  , the cosmological 

constant ( ) 0 0 0 ,  ,  ,  ,  ,  f z H G a  , as well as today's scale factor ( 0a  = 1). 
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Then, the algorithm starts by defining a function ( ) 0 0 0 ,  ,  ,  ,  ,  f z H G a   that 

represents the given differential equation in the context of cosmological physics. This 

function uses the variables (z) as the redshift, (H0) as the Hubble constant, 0  as the 

density parameter, (G) as the gravitational constant, ( ) as the cosmological constant, 

and 0a  as the scale factor of the day. Next, an euler function is defined to implement the 

Euler method of solving differential equations. This function takes arguments such as 

steps (h), initial value initial( )z , and final value final( )z , as well as other physics parameters.  

The iterative steps are calculated based on the initial and final values of (z) and the 

(h) steps. The variables (z) and (H) are initialized with appropriate numeric arrays. The 

iterative process is performed using a for loop for (n) times, by calculating the values of 

(z) and (H) using the iterative formula of the Euler method. Each iteration, the value of 

(z) is updated by the (h) step, and the value of (H) is updated using the Euler method 

approximation. The numerical results of the differential equations are stored in a data 

frame containing the values of (z) and (H) at each step. The numerical results are plotted 

using the plot function of R to visualize the relationship between the Hubble parameter 

and redshift. 

 

Figure 1. Simulation of Euler Method for Calculation of Hubble vs Redshift Parameters 

in Cosmology 

The results illustrates the correlation between redshift (z) and the Hubble parameter 

(H), serving as an indicator of the universe's expansion rate in cosmology. Redshift (z) 

quantifies the distance of celestial objects from the observer, with higher values 

indicating greater distances. Remarkably, the Hubble parameter (H) remains consistent 

across the entire redshift (z) spectrum in the result. This constancy suggests an unaltered 

universe expansion within the implemented cosmological framework, devoid of external 

influences like gravitational forces or dark energy. Consequently, the results confirms 

that, within the specified model parameters, the universe's expansion remains uniform 

over the observed period. 

https://dx.doi.org/10.20961/jphystheor-appl.v8i1.82991


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 8 No. 1 (2024) 49-66 doi: 10.20961/jphystheor-appl.v8i1.82991 

 

62 A comparative study of numerical methods for estimating …  

 

3.2.2.  Runge-kutta numerical test 

In the realm of cosmological physics, the function `f` encapsulates the essence of 

cosmic evolution. Taking into account the redshift (`z`), the Hubble parameter (`H`), 

and a set of crucial physical parameters stored in an array `params`, this function 

computes the differential equation's value, symbolizing the dynamic progression of the 

universe. The outcome of `f` yields the square root of the right-hand side of the 

equation, offering insights into how the Hubble parameter evolves with shifting 

redshifts, thereby unraveling the universe's rate of expansion. 

 

Figure 2. Algorithm of R program Simulation of runge-kutta Method for model 

The `runge_kutta` function described above facilitates the numerical solution of a 

given physical system by employing the 4th-order Runge-Kutta method. This function 

takes as input the differential equation function `f`, initial values of the redshift `z0` and 

the Hubble parameter `H0`, along with fundamental physical parameters such as 

gravitational and cosmological constants. It also requires specifications for the step size 

`h` and the number of steps `n` utilized in the numerical approximation. During each 

iteration, the method computes intermediate values `k1`, `k2`, `k3`, and `k4` based on the 

provided differential equation function `f` evaluated at predetermined points. 

Subsequently, it updates the values of the redshift `z` and the Hubble parameter `H` 

accordingly. The resulting output is a data frame containing the redshift `z` and the 

corresponding Hubble parameter `H` at each simulation step, enabling further analysis 

of how these physical parameters evolve as the redshift changes. 

The simulation results illustrate how the Hubble parameter (H) evolves with respect 

to changes in redshift (z), which is an indicator of the spectral shift of light produced by 

changes in the wavelength of observed objects in the universe. From the result, it can be 

seen that the higher the redshift, the faster the Hubble parameter changes, reflecting the 

dynamics of the expansion of the Universe. 

From the result, we can see that as redshift increases, the Hubble parameter also 

increases, in accordance with the cosmological model that describes the expansion of 

the Universe. The higher the redshift, the faster the Universe is expanding. The physics 

https://dx.doi.org/10.20961/jphystheor-appl.v8i1.82991


Journal of Physics: Theories and Applications E-ISSN: 2549-7324  /  P-ISSN: 2549-7316    

J. Phys.: Theor. Appl.  Vol. 8 No. 1 (2024) 49-66 doi: 10.20961/jphystheor-appl.v8i1.82991 

 

R. C. Siagian  63 

 

parameters used in the simulation, such as the Hubble constant (H0), gravitational 

constant (G), density parameter ( 0 ), and cosmological constant ( ), significantly 

affect the rate of change of the Hubble parameters as the redshift changes. 

3.2.3.  Adams-Bashforth numerical test 

The function `f(z, H, rho0, G, Lambda, H0)` is used to calculate the derivative of 

H(z) in the context of a differential equation modeling the change in the expansion rate 

of the universe at the point (z, H). The function `adams_bashforth(z0, H0, rho0, G, 

Lambda, h, num_steps)` is used to iterate with the Adams-Bashforth method, where the 

steps integrate the derivative to estimate the value of H(z) at subsequent points. 

Determine initial values for physical parameters such as the cosmological redshift 

(z0) and the expansion rate of the universe (H(z0)). Iterate a predetermined number of 

steps to estimate the value of H(z) at subsequent points. At each iteration, Use the 

Runge-Kutta method of order 4 (RK4) to calculate the first step, which helps us in 

estimating the value of H(z) at the next point. After that, apply the Adams-Bashforth 

method to iterate the value of H(z) at subsequent points using the previous values. 

During the iteration process, we also update the cosmological redshift value (z) to 

describe the evolution of the universe over time. After obtaining the numerical results, 

we plot the result of H(z) against z using the `plot()` function. 

 

Figure 3. Algorithm of R program Simulation of Adams-Bashforth Method for model 

4.  Conclussion 

This research explores the importance of understanding cosmological parameters in 

evolutionary models of the expansion rate of the universe. We test these models using 

numerical methods such as Euler, Runge-Kutta, and Adams-Bashforth. Through Euler 

testing, we observe how the initialization of physics parameters such as the Hubble 

constant 0H , density parameter (  ), gravitational constant (G), and cosmological 

constant  , affect the iterative calculation of the expansion rate of the universe. Our 

numerical results provide a clear visualization of the relationship between the Hubble 
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parameter and redshift, which is important in understanding the change in expansion 

rate. Testing with the Runge-Kutta method provides deep insight into the evolution of 

physical parameters as redshift changes. Using the (f) function that reflects cosmic 

evolution, we estimate the values of (z) and (H) at each simulation step. The 

visualization results show how the physics parameters behave as redshift changes, 

providing a better understanding of the expansion dynamics of the Universe. The final 

test with the Adams-Bashforth method makes an additional contribution to 

understanding the evolution of the expansion rate of the Universe. With this method, we 

can estimate the value of (H(z)) at later points more accurately. Visualization of the 

numerical results of (H(z)) against (z) shows how the expansion rate of the universe 

evolves along with the change of redshift. This study confirms that models of the 

expansion rate evolution of the universe produce a consistent relationship between 

cosmological parameters and the expansion rate, as observed through the various 

numerical methods used. This makes a significant contribution to our understanding of 

the dynamics of the Universe and the evolution of its parameters through time. 
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